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Abstract

Tor is an important tool for protecting people against Internet surveillance and censorship.
Therefore, some governments that wish to monitor or restrict their people’s use of the Internet
attempt to block access to Tor. Bridges are circumvention proxies that provide routes around this
censorship, enabling people to access Tor, even in countries that ordinarily censor it. However, a
motivated censor may work to identify these bridges and block access to them.

To impede the censor’s attempts at identifying and blocking bridges, reputation-based sys-
tems for bridge distribution such as Hyphae, Salmon, and Lox have been proposed. These sys-
tems place greater trust in users when the bridges they know remain uncensored and reduced
trust in users when bridges they know become censored. In order to enact these changes in trust,
it is necessary to know which bridges have been blocked and which have not, but Tor does not
currently have a systematic way to detect blocked bridges.

In this work, we present Troll Patrol, a system for automatically detecting censorship of Tor
bridges. This system infers bridge reachability based on already-existing bridge usage statistics
and novel anonymous user reports that we design for this purpose. We evaluate our system using
a simulation and demonstrate that user reports improve our ability to detect bridge censorship,
compared to using statistics on bridge use alone. We describe an attack that allows the censor
to evade detection if classification of bridge blockage relies on bridge statistics alone, and we
demonstrate that user reports allow us to defend against this attack.
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Chapter 1

Introduction

Tor [DMS04] is an important tool for anonymity on the Internet. Tor users wrap their traf-
fic in layers of encryption and route it through multiple relays called nodes to obfuscate its
path. A user’s Tor client learns the entire list of available nodes by downloading the Tor consen-
sus [TP24e], and it selects three nodes from this list: an entry (often called guard) node, a middle
node, and an exit node. The client negotiates encryption keys with each node and encrypts its
traffic first for the exit node, then for the middle node, and finally for the entry node. The client
sends this thrice-encrypted traffic to the entry node, which removes a layer of the encryption and
forwards the now twice-encrypted traffic to the middle node. The middle node similarly removes
a layer of encryption and forwards the traffic to the exit node. Only at the exit node is the last
layer of encryption removed, revealing the decrypted version of the user’s request. (Similarly,
when the destination responds, each node adds a layer of encryption.) In this way, Tor provides
privacy even from the operators of the network, following the Decoupling Principle [SIWR22]:
the entry node can identify the user but not the destination or contents of their traffic, the exit
node knows the destination (and possibly contents) of the traffic but not the identity of the user,
and the middle node learns no sensitive information, only that it is relaying encrypted traffic to
and from other Tor nodes.

Tor was not originally intended as an anti-censorship tool, but it is very useful for this pur-
pose. (This is a natural extension of privacy and anonymity: discriminately blocking certain
activities and punishing dissident speech is a much greater challenge to a censor that cannot
determine people’s activities or identify dissident speakers.) Thus, an entity that wishes to re-
strict or monitor people’s use of the Internet may work to block access to Tor; major blockages
of the network have been observed in countries such as China [WL12], Iran [pho11], and Rus-
sia [ggu21], just to name a few. The most basic approach to blocking Tor is trivial. The identities
of Tor nodes are public; this censor can simply download the Tor consensus and block access
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to the IP addresses (or IP:port pairs) users would use to connect to those nodes. To combat this
attack, users may use anti-censorship proxies called bridges [DM06] to gain entry into the Tor
network.

The simplest form of a bridge is just an unlisted Tor entry node, but these are not difficult to
block. Tor does not normally attempt to resist traffic profiling [MTC17, TP17], so some censors
use techniques such as deep packet inspection (DPI) to identify and block Tor traffic [TP11b,
Run12, pho12a, pho12b]. If bridges run vanilla Tor (i.e., the Tor protocol without modifications),
they may be identified using these techniques [MTC17]. A number of works attempt to resist
DPI using either steganographic protocols [WWY+12, MLDG12, HNGJ16, BSR17, BSRN20,
FBS22], which hide Tor traffic inside other protocols or attempt to replicate other protocols,
or by using fully encrypted protocols [Sc24, Lei10, FJ23, TP24i, WPF13], which aim to be
difficult to fingerprint. (If a censor attempts to block something it cannot fingerprint well, it risks
overblocking.) In the Tor context, these circumvention protocols are called pluggable transports
(PTs) [TP24k]. Tor currently uses four pluggable transports: meek, Snowflake, lyrebird, and
WebTunnel [TP24c]. We briefly describe these below and summarize them in Table 1.1.

meek Meek uses a technique known as domain fronting [Dav15] to make it difficult for a
censor to differentiate between inconspicuous HTTPS traffic to a major content delivery network
and meek traffic. The approach of meek is not to hide the bridge’s existence and location from
the censor but to tie the bridge so tightly to essential infrastructure that the censor cannot block
the bridge without also suffering significant disruption of regular Internet use.

Snowflake Snowflake [BBF+24] iterates on a concept proposed by Flashproxy [FHE+12],
which argues that if many volunteers around the world allow their web browsers to act as
short-lived circumvention proxies, it would be very difficult for the censor to block them ef-
fectively. Proxies using the Snowflake PT (called “snowflakes”) are ephemeral. Users learn
about them from a broker that is accessible using domain fronting or similar techniques. Users
connect to these snowflakes using WebRTC, a common protocol used in video calls. (However,
Snowflake uses data channels, rather than the media streams intended for WebRTC audio and
video calls; future work may be required to improve Snowflake’s resistance to protocol finger-
printing [BBF+24].) The approach of Snowflake is not to rely on long-term secrecy of the proxies
but to incur high enough proxy churn to overwhelm the censor’s efforts to identify and block all
the snowflakes. When one snowflake is blocked, users simply move on to another.

lyrebird Lyrebird [TP24i] (formerly called “obfs4” and still referenced as such in many places)
is a fully encrypted protocol. Lyrebird bridges are easy to block if the censor can identify them
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Table 1.1: Pluggable transports (PTs) used in Tor. PTs that require keeping the bridge secret from
the censor are indicated in bold text; we focus on bridges that use these PTs. While Snowflake
uses WebRTC, future work may be required to prevent censors from distinguishing Snowflake
traffic from WebRTC video calls.

PT Steganographic or fully encrypted Resistance to censorship
meek Steganographic (HTTPS) Expensive to block

Snowflake (Partially) Steganographic (WebRTC) High bridge churn
lyrebird Fully encrypted Bridge is kept secret

WebTunnel Steganographic (HTTPS) Bridge is kept secret
(may be expensive to block)

as such. They are not ephemeral like snowflakes. They are easily isolated from other traffic (by
having a unique IP address and port), so they are not expensive to block once identified. Thus, it
is necessary to prevent censors from identifying lyrebird bridges.

WebTunnel WebTunnel [sg24] (based on HTTPT [FW20]) is a new pluggable transport that
uses WebSocket-like HTTPS traffic to carry Tor traffic. WebTunnel runs on existing web servers;
only users who know a secret path (sent encrypted with TLS) can connect to the proxy service.
Because WebTunnel uses or resembles normally allowed protocols (HTTPS, WebSocket) and
runs on the same IP address and port as an actual web server, it may be more expensive to
block. However, if the website is not essential, the censor may be willing to block it along
with the WebTunnel bridge. Thus, it may still be necessary to prevent censors from identifying
WebTunnel bridges.

As discussed above, some bridges need to be made available to users but kept secret from
censors. To prevent easy identification by censors, these bridges are not listed in the Tor consen-
sus, and they use PTs to hide the nature of the traffic. However, a number of techniques may still
allow censors to identify possible bridges [Din11b]. Censors can and do actively probe suspected
servers to see if they act like Tor bridges [EFW+15, twi12]. To defend against active probing,
bridges can refuse to respond, or respond normally with another expected service [FW20, sg24],
unless the client demonstrates knowledge of some secret [TP24i, SJP+11, WPF13]. Probing
resistance is an essential part of modern PTs.

While probing-resistant PTs aim to protect bridges from discovery by censors, censors may
still be able to use the same avenues that regular people use to learn about bridges. Tor represents
bridges as bridge lines. A bridge line lists the information needed to connect to a bridge (such as
its PT, IP address and port, unique fingerprint, cryptographic keys, and secret to defend against
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active probing). Bridge lines for secret bridges should not be shared publicly; the information
used by people to connect to a bridge can also be used by censors to identify the bridge, confirm
that it is a bridge, and block it. A public hashed fingerprint can be computed from the private
fingerprint listed in the bridge line, and this hashed fingerprint can be used publicly to identify
the bridge without enabling censors to block it.

The Tor Project holds a set of bridges it has been entrusted with distributing. There must
be some way to distribute bridge lines representing these bridges to genuine users, without also
exposing them to censors. Historically, the backend for distributing these bridge lines has been
BridgeDB [TP24a]. BridgeDB is currently being replaced by rdsys, the resource distribution
system [TP24l]. The distribution backend partitions the set of bridges it knows and provides dif-
ferent partitions to different distributors [TP24b]. Currently, the publicly accessible distributors
are HTTPS, email, moat [TP24j] (an interface within Tor Browser that uses domain fronting),
and Telegram. In an attempt to prevent bridge enumeration, the number of bridges distributed to
each requesting user is limited. For example, if the same IP or email address requests bridges
multiple times during the same time period, the same bridges are returned. IP addresses from
the same /24 block are treated as the same IP address, and emails are only accepted from certain
email providers (currently Riseup and Gmail). However, these protections have long been known
to be insufficient against a motivated censor. China was able to enumerate HTTPS-distributed
bridges in 2009 by requesting these bridges from many different IP subnets, and it was also able
to defeat the email defense in 2010 [Din11b]. Bridge enumeration through repeated queries of
these channels appears to have remained a capability of censors since [Boc21b, TP20].

In response to these bridge enumeration attacks, new reputation-based systems for distribut-
ing Tor bridges and other circumvention proxies have been proposed. These systems allow
trusted users to invite friends they trust, and they reward honest users while punishing users who
appear to collude with censors. Proximax [MML11] has the goal of maximizing the number of
overall user-hours of access to proxies. Trusted users within the system are given individualized
host names that allow access to a set of proxies. These users share their proxies however they
wish with friends (but these friends do not become users of the Proximax system itself). Informa-
tion is tracked about how many user-hours of access those users’ proxies have provided, as well
as the risk of the users inviting a censor. This information determines who should distribute new
proxies. Invitations of new trusted users to the system (as opposed to recipients of information
about the proxies) are rare, and which users should be allowed to invite friends is determined by
both their own performance and their friends’ performance.

rBridge [WLBH13] focuses on protecting privacy while leveraging trust networks. Users
earn reputation credits based on their known bridges’ uptime, and when their bridges become
blocked, they can use these credits to replace them with new bridges. Users with enough rep-
utation credits gain the ability to invite friends to join and learn about bridges. rBridge uses
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an anonymous credential scheme to track user reputation without compromising privacy. Hy-
phae [LdV17] adopts the anonymous credential scheme from Chase et al. [CMZ14] to provide
better efficiency compared to rBridge.

Rather than award reputation credits, Salmon [DRPC16] assigns users discrete trust levels,
where users’ trust levels go up if their proxies remain unblocked or down if their proxies become
blocked. Trusted users can invite friends, and Salmon attempts to assign those new users to the
same proxies as the friends who invited them. Salmon tracks each user’s trust level, their suspi-
cion level (i.e., the probability that the user is working for a censor), and their recommendation
graph, associating users with their invited friends. Unlike previously described reputation sys-
tems that require an invitation from an existing user to join, Salmon can optionally allow new
users to join without invitation. However, it requires that new users joining in this way use well-
established Facebook accounts to do so, thus relying on Facebook’s identification and removal
of fake accounts to limit bridge enumeration.

Lox [Tul22, TG23] combines a discrete trust level system as in Salmon with the anonymous
credential scheme of Chase et al. as in Hyphae. If a highly trusted user’s bridges become blocked,
that user can migrate to different bridges, but they lose trust levels in the process. If they migrate
too many times, they lose the ability to regain trust entirely. To prevent a censor from learning
many bridges by creating many trusted “friend” accounts, invited Lox users join the same bridges
as their friends. Additionally, invited users inherit the blockage migration count from the friends
who invited them. Like Salmon, Lox aims to allow users to join without knowing an existing
trusted user, but it eschews Salmon’s Facebook option, envisioning instead that new users can
join using techniques such as those currently available (e.g., email or HTTPS).

The Tor Project is currently integrating Lox into Tor [TP24h], so we consider Lox our primary
exemplar in this work. In order for Lox or another reputation-based bridge distribution system
to penalize misbehaving users and reward honest ones, it is necessary for the system to have
insight into which bridges are accessible to users and which are not. Currently this problem has
not been adequately solved. The Tor Project’s primary source of data on bridge reachability is
approximate per-country counts of unique IP addresses from which bridges received connections
each day. These are reported by bridges and made publicly available [TP24d]. These statistics
are useful, but we find that they are insufficient on their own. In particular, these connection
counts can be artificially increased by a censor that blocks regular users from connecting to a
bridge but makes its own connections from various IP addresses it controls in order to avoid
detection.

By introducing a privacy-preserving user reporting system alongside these extant bridge
statistics, we show that we can improve the rate of censorship detection when the censor does
not perform the described attack, as well as defend against this attack, a feat that is not possible
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using bridge statistics alone. We demonstrate these claims in a simulation, and we find that if
25% of users submit reports, we can detect over 85% of blocked bridges in spite of this attack.
Our thesis statement is as follows:

It is possible to design a bridge blockage detection system that harnesses privacy-preserving
user reports in conjunction with bridge usage statistics to successfully detect more blocked
bridges than would be detected using only the bridge statistics. These user reports can allow
such a system to detect censorship even when the censor takes measures to hide it.

Our contributions are as follows:

• We design Troll Patrol, a system for automatically detecting censorship of Tor bridges. A
primary component of Troll Patrol is an anonymous reporting system. Reports may be
submitted only by users who meet certain criteria (such as being a legitimate user of a
bridge or being a highly trusted Lox user), but we ensure these criteria without identifying
users.

• We provide a reference implementation of our design in Rust and supply modifications to
the existing Lox implementation to support integration with Troll Patrol.

• We design and implement a simulation for Lox and Troll Patrol and use it to evaluate
Troll Patrol. Noting that one stated limitation of Lox was unoptimized parameters [Tul22,
TG23], we believe that our simulation may be independently useful for testing Lox in
various configurations (e.g., with different processes for deciding which users learn which
bridges).

The remainder of this thesis is organized as follows. Chapter 2 discusses relevant background
on Lox and techniques for measuring censorship. Chapter 3 describes our threat model and the
design of our system to defend against those threats. Chapter 4 details the design of a simulation
we develop to evaluate our system, and Chapter 5 presents the results of our evaluation using this
simulation. We resolve our work with a discussion of limitations and future work in Chapter 6
and conclude in Chapter 7.
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Chapter 2

Background

This chapter describes the design of Lox and considerations for measuring censorship.

2.1 Lox

We begin with a description of the Lox bridge distribution system, as described in the Lox the-
sis [Tul22] and paper [TG23] and implemented in the Tor Project’s Lox codebase [TP24h].

Lox consists logically of two servers, the Lox Authority (LA), which is the primary Lox
server, and a Lox invitation token distributor (named BridgeDb in the Lox code but distinct
from BridgeDB, the predecessor to rdsys). These two components are currently combined into
the same server, called the Lox Distributor, but they could be separate entities. Lox is designed
to work with rdsys. Rdsys maintains a database of bridges and shares some subset of these
bridges with the LA to distribute to users. When the LA learns about bridges from rdsys, it
adds their bridge lines to its own database and partitions this database into open-entry and invite-
only buckets. Open-entry buckets contain one bridge each and are available to new Lox users
who are not invited by existing trusted users. Invite-only buckets contain three bridges and are
only available to new Lox users if those users are invited by existing users. The LA also issues
anonymous Lox credentials to users, which allow them to learn their bridges and perform Lox
protocols.

We first describe Lox credentials, then provide a brief overview of the ways users can use
Lox.
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2.1.1 Lox Credentials

Lox uses the MACGGM -based anonymous credential scheme from Chase et al. [CMZ14]. The
Lox Authority acts as both issuer and verifier. Let A and B be generators of a fixed group G of
prime order ℓ, written additively, such that logB(A) is unknown. The Lox Authority’s secret key
is the vector

(x̃0, x0, x1, ..., xn)
$← (Z/ℓZ)n+2

where n is the number of attributes in the Lox credential (currently 6). The corresponding public
key is the vector

(X0, X1, ..., Xn) = (x̃0A+ x0B, x1A, ..., xnA).

A Lox credential consists of a MAC (P,Q) and a vector of attributes (m1, ...,mn) ∈ (Z/ℓZ)n,
where

b
$← (Z/ℓZ)∗
P = bB

Q =
(
x0 +

n∑
i=1

ximi

)
P .

Lox credentials have the following attributes:

• Φ: A random unique ID

• t: The date of the user’s last trust level change

• L: The user’s trust level (from 0 to 4, where level 0 is untrusted and levels 1–4 are trusted)

• β: The user’s bucket, consisting of (i,Ki) where i is a bucket ID that can be used to retrieve
the encrypted bucket from a table of encrypted buckets, and Ki is a symmetric key that the
user can use to decrypt the encrypted bucket

• a: The number of available invitations with which the user can invite friends

• d: The number of bucket blockages the user has observed (i.e., the number of times the
user has performed a blockage migration)
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Where Lox refers to an attribute by a symbol (e.g., Φ), we will refer to that attribute’s value
in equations by m with the symbol as a subscript (e.g., mΦ) to emphasize that the attribute is a
scalar. Users can show their credentials to prove that they have certain attributes. The MAC is
rerandomized before credential shows:

t
$← (Z/ℓZ)∗

(P ′, Q′) = (tP, tQ)

The simplest way to show one’s credential would be to present all the credential’s attributes along
with the MAC. The LA could then verify this MAC on the given attributes by simply checking

Q
?
= (x0 +

n∑
i=1

ximi)P .

However, this requires all attributes and the MAC (P,Q) to be revealed. Instead, it is desir-
able to hide some or all of the credential’s attributes as well as Q. To blind an attribute, the user
forms a Pedersen commitment to that attribute:

zi
$← (Z/ℓZ)∗

Ci ← miP + ziA.

The user also forms a Pedersen commitment to Q:

zQ
$← (Z/ℓZ)∗

CQ ← Q+ zQA

The user computes

V ← (
∑

ziXi)− zQA, for i where mi is blinded

and uses a Schnorr proof to prove in zero knowledge that

1. For each blinded attribute mi, Ci is a valid commitment to mi

2. V = (
∑

ziXi)− zQA, for i where mi is blinded

along with any additional statements.

The user submits P , any revealed attributes mj , any commitments Ci for blinded attributes,
and CQ, along with the non-interactive Schnorr proof of the statements to be proven and any
other necessary values.

The LA can verify this credential show by recomputing V as
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V ′ ← (x0 +
∑

xjmj)P +
∑

xiCi − CQ, for i where mi is blinded, and j where mj is revealed

and using V ′ to verify the Schnorr proof. Note that in the honest case,

V ′ = (x0 +
∑

xjmj)P +
∑

xiCi − CQ

= (x0 +
∑

xjmj)P +
∑

(xi)(miP + ziA)− (Q+ zQA)

= (x0 +
∑

xjmj)P +
∑

(ximiP + xiziA)−Q− zQA

= (x0P +
∑

xjmjP +
∑

ximiP ) +
∑

xiziA−Q− zQA

= Q+
∑

xiziA−Q− zQA

=
∑

zi(xiA)− zQA

=
∑

ziXi − zQA

= V

Generally, credential shows in Lox involve some combination of hidden and revealed at-
tributes. In particular, the ID Φ is always revealed in the existing Lox protocols, and after each
protocol (or pair of protocols if two go in sequence), the credential is replaced with a new cre-
dential bearing a new ID (jointly created by the LA and the user in such a way that the LA does
not learn the ID during issuance, and the user cannot bias its value). Revealing the ID only dur-
ing shows but not issuance and issuing a new credential with a new ID after shows preserves
unlinkability of credential shows. Once an ID is revealed, it can be added to a set of observed
IDs, preventing credential reuse. A credential’s bucket β is only revealed when the credential
is first issued at trust level L = 0. All other protocols, including migration to another bucket
and redeeming an invitation from a friend, blind the bucket both during the credential show and
during issuance of the new credential. (In these cases, the user blinds the new β but proves in
zero knowledge that the new value is correct.)

2.1.2 Using Lox

We briefly describe the ways users interact with the Lox system. We do not detail every Lox
protocol here.

New users who cannot be invited by existing trusted users can obtain open invitations from
the Lox invitation token distributor (likely through existing bridge distribution channels: HTTPS,
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email, moat, and/or Telegram). These open invitations can then be presented to the LA in ex-
change for a Lox credential with L = 0 and a β corresponding to an open-entry bucket. (The
LA also provides a single bridge line directly along with this level 0 credential.) In its current
implementation, the Lox invitation token distributor sets a maximum daily number of bridges
that may be distributed via open invitations (currently 100) and a maximum number of times k a
given β may be distributed in an open invitation (currently k = 10). The distribution method for
open-entry buckets is currently simple: the first k users receive open invitations for one bucket,
the next k users receive open invitations for a second bucket, and so on. Lox provides various
suggestions for how this may be improved in the future. Lox requires a table of all encrypted
buckets to be made available to users, e.g., via a public website. Users can download this table
and use their β values to decrypt their own buckets. This encrypted bridge table is updated daily
to provide users with new information about their buckets, including replacements for bridges
that have gone offline (not due to censorship) and a bucket reachability credential, which indi-
cates that the bucket is believed not to have been blocked by a censor. A bucket is considered to
be blocked if a majority of bridges in the bucket have been blocked.

Figure 2.1 illustrates the possible level changes in Lox. If a user’s open-entry bucket has not
been blocked after 30 days of the user being issued their level 0 credential, the user can exchange
their credential for a level 1 credential and migrate to an invite-only bucket. This invite-only
bucket contains the bridge from their open-entry bucket, along with two other bridges. If a user’s
credential is level 3 or greater, and their bucket has been blocked (indicated to the user by the
lack of a bucket reachability credential for their bucket), they can migrate to a new bucket at
the cost of losing 2 trust levels. If a user’s credential is level 1 or greater, and their bucket has
not been blocked after a certain number of days, they can exchange their credential, along with
the bucket reachability credential for that day, for a new credential with the same bucket but a
trust level that is one higher. However, if they have already migrated a certain number of times
because of blocked bridges, they lose the ability to level up. Leveling up to level 2 or greater also
unlocks the ability to invite friends to join one’s own invite-only bucket at trust level 1, rather
than those friends having to start with an open-entry bucket at level 0. Each time the user levels
up to level 2 or greater, they obtain a finite number of invitations to give to friends. After enough
time, level 4 users can “level up” back to level 4 to earn more invitations.

Every day, the LA needs to learn which bridges are blocked and which are not so that it
can determine which level up and bucket migration operations should be allowed on that day.
The LA also uses this information to decide when to stop distributing open-entry bridges to new
users. Because these are daily operations, it is not necessary to detect censorship immediately;
we simply need to know whether a bridge is reachable or not each day.
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L = 0

Open invitation

L = 1

Invitation

L = 2 L = 3 L = 4

Wait 30+ days

Trust migration

Wait 14+ days

Level up

Wait 28+ days

Level up

Wait 56+ days

Level up

Wait 84+ days

Level up

Blockage migration
Blockage migration

Figure 2.1: Level migrations that are possible in Lox. While it is not possible to have a level
higher than 4, level 4 users can “level up” to new level 4 credentials to acquire more invitations.
Leveling up can only be done after the requisite number of days have passed at the current level.

2.1.3 Other Parameters

Global Censorship Model Currently, Lox treats bridge censorship as binary: each bridge is
either blocked or not blocked. If any censor learns the bridge, all Lox users with knowledge
of the bridge are distrusted, regardless of whether they reside in the country where the bridge
is blocked. This is in contrast with rdsys, which has a blocked in field for indicating which
countries block which bridges. If it is discovered that a bridge has been blocked, rdsys should
be informed of which country blocks the bridge, but Lox only needs to know that some country
blocks it.

Bootstrapping Period Open-entry buckets are less resilient against censorship. If all users
begin with open-entry buckets, a determined censor may enumerate and block all the bridges,
preventing the users from migrating to invite-only buckets and taking advantage of their trust
networks. Lox thus recommends an initial bootstrapping period. During this period, only trusted
users should be allowed to join the system, and they should be able to obtain trusted credentials.

2.2 Measuring Censorship

As established, knowledge of which bridges are accessible and which are not is a requirement
for reputation-based bridge distribution systems such as Lox. A number of ideas for determin-
ing bridge reachability have been discussed [Din11a, TP22, TP23b], but the Tor Project has not
currently adopted a procedure for automatically determining this. Creation of a system to make
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these determinations would thus be helpful to the deployment of Lox (or similar reputation sys-
tems). We consider how our system should identify this censorship.

In a 2011 technical report [Din11a], Dingledine describes five possible sources of data for
determining whether or not bridges are reachable:

1. Direct Scans

2. Reverse Scans

3. Indirect Scans

4. Bridge Statistics

5. User Reports

The first three are active approaches that would involve running some additional tests. The last
two are passive approaches that do not involve introducing additional tests, instead collecting
data produced as a byproduct of routine interactions between users and bridges. We discuss
these proposed sources of information and relevant prior work in these areas.

2.2.1 Direct Scans

An obvious method for testing whether or not a bridge is accessible from a given region is
simply attempting a connection to the bridge from that region, a method called direct scanning.
However, performing such censorship measurements in a manner that is both safe and accurate
can be challenging. If we ask volunteers in a region to perform such tests for us (i.e., intentionally
attempt to access resources on a list of potentially forbidden resources), those volunteers might
face retaliation. It may be possible to perform these measurements safely or mitigate these risks,
for example by making the measurements appear as though they were generated by malware
rather than intentional human action, as proposed by Jones and Feamster [JF15]. We find such
ideas interesting but ultimately feel that asking humans to perform additional measurements for
us is not reasonable.

An approach that avoids risk to human participants is using infrastructure that is not oper-
ated by end users, such as VPNs [NCW+20]. However, this approach carries its own concerns.
The censor may apply different policies for businesses than it does for people; a resource might
be accessible from a VPN run on this infrastructure but inaccessible to end users on residential
Internet service plans. Furthermore, VPN providers are known for misrepresenting the true lo-
cations of their servers, and it can be challenging to properly verify these claims [WCC+18].
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We may be unable to find commercial VPN exits that are (actually) located in the regions we
wish to test. Additionally, gaining access to such infrastructure carries financial costs. Renting
infrastructure such as virtual private servers (VPSes) in regions of interest carries similar benefits
and limitations.

Since the particular application of censorship measurement carries an additional requirement
to avoid revealing the tested resources (Tor bridges) to censors, direct scanning raises an addi-
tional concern. If we have a small number of vantage points for direct scanning from a region
(such as VPN exits or VPSes we rent), and we test many bridges, we may draw attention from the
censor. A vantage point for testing bridge censorship identified as such may reveal new bridges
to a censor that watches its traffic [Din11b], ultimately causing more harm than good. Possi-
ble defenses against censors discovering bridges in this way include using many vantage points,
limiting the number of bridges tested by each vantage point, and adding cover traffic to obscure
what the vantage point is testing.

In addition to the other problems discussed, performing direct scans of many bridges (for
example, all the bridges distributed by Lox) would require our system to have knowledge of all
of those bridges. This is something we would like to avoid if possible, as a list of bridges is very
sensitive information, and we want to minimize the harm that might be caused by compromise
of our system. Due to the various limitations of direct scanning, we aim to avoid dependence
on this approach. Our system does not implement direct scans, but they could be added as an
optional plugin to augment the approach we take.

2.2.2 Reverse Scans

If censorship is implemented bidirectionally (meaning both that users in the censoring region
cannot connect to the bridge and that the bridge cannot connect to resources in the censoring
region), then we can test censorship by having the bridge attempt a connection to a resource
(for example, a popular website) in the region of interest, a method called reverse scanning.
Dingledine suggests implementing this by building a circuit to the bridge then trying to extend
this circuit to the resource in the region of interest [TP11a]. Based on the way the circuit fails
(which it will, assuming the resource is not a Tor node), we can infer whether or not the bridge
was prevented from sending packets to the resource. The benefit of this approach is that it uses
existing infrastructure and may appear less conspicuous to the censor than direct scans.

The downside of reverse scans is that they can only detect censorship, not the absence of
censorship. If a reverse scan fails, we can infer that the bridge is blocked. If the reverse scan
succeeds, we cannot infer that the bridge is not blocked because it might be blocked a different
way. The censorship implementation may not be bidirectional, or it may be more precise, such
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as blocking the IP address and port of the bridge. This approach also assumes that the same cen-
sorship policies are applied to the resource to which we attempt a connection as are applied to
regular people. Rather than indiscriminately attempting reverse scans to resources in all censor-
ing regions, we could first test for bidirectional censorship in that region by performing the same
circuit extension test from an exit node [TP10]. Only if this test fails would we then attempt a
reverse scan from a bridge.

We view reverse scanning as a plausible approach. Its primary limitation is that it is not a
conclusive test when censorship is not bidirectional. In the case that the reverse scan succeeds,
another test (such as a direct scan) would still be necessary. Additionally, as with direct scans,
reverse scans would require our system to have knowledge of all the bridges being tested. As
we are aiming to avoid direct scans at this time, and we wish to avoid requiring our system to
know sensitive information about the bridges being tested, we do not implement reverse scans;
however, a plugin for reverse scans could be added as future work. We discuss this possibility in
Section 6.2.6.

2.2.3 Indirect Scans

To address the limitations of direct scanning, there has been work on collecting censorship mea-
surements based on the censor’s response to the actions of other hosts, a method known as indi-
rect scanning. Techniques for indirect scanning include sending specially crafted requests to pub-
lic servers to see whether application-level censorship is occurring via DPI [VMS+18, RSD+20]
and inducing a connection between two hosts and using side channels to detect whether network-
level censorship prevents this connection [ant98, EPKC10]. The latter may be useful for mea-
suring bridge censorship.

Ensafi et al. [EKAC14] describe one such approach to test whether two hosts on the Internet
can connect to each other, without controlling either host. This method sends the first host (in our
case, the bridge) a TCP SYN packet with its source address spoofed to that of the second host
(in our case, a resource in the censoring region). If no interference occurs, the first host sends
SYN-ACK to the second host, and the second host (which did not send the initial SYN) responds
with RST. By measuring incrementing IPIDs on both hosts, one can learn which of these packets
succeeded. The goal is to make it appear to the censor as though the two hosts are attempting
to communicate, so as with direct scanning, this may raise ethical concerns. Augur [PEL+17]
makes use of this technique and specifically limits its tests to devices believed to be Internet in-
frastructure (such as routers or middleboxes) rather than end-user devices to reduce the potential
for retribution against end users.

As with reverse scans, we cannot be confident about the results of indirect scan. The censor
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could block all SYN-ACK packets for which it has not seen a corresponding SYN come from its
own network. The censor could allow outgoing RST packets even to forbidden hosts (perhaps
specifically to prevent this measurement). As with reverse scans, perhaps we could first learn
the censor’s normal behavior by testing with a Tor exit node known to be blocked in the region.
However, this test is still only useful under certain conditions, and we would require another test
(such as a direct scan) as a fallback. As with reverse scans, we do not implement indirect scans
at this time, but a plugin for indirect scans may be a useful area of future work, which we discuss
in Section 6.2.6.

2.2.4 Bridge Statistics

The Tor Project collects daily statistics about Tor nodes, including bridges, which are identi-
fied by their hashed fingerprints. These statistics are reported by the nodes and made publicly
available through the CollecTor [TP24d] service. Among the files that can be downloaded from
CollecTor, the most useful for our purpose is the “extra-info” descriptor [TP24f], which in the
case of bridges includes a bridge-ips field. This field contains a list of country codes from
which the bridge saw a non-relay connection during the past day and the number of unique IP
addresses (rounded up to a multiple of 8) used to connect from each such country. A 2011 re-
port [Loe11] by Loesing suggests that observing trends in these statistics for a bridge may be
useful for detecting blockages and suggests three possible approaches for determining whether
or not a bridge is blocked.

Absolute threshold Loesing identifies that if the number of users connecting from a certain
country falls below some minimum threshold, we may consider the bridge to be blocked in that
country. For example, if the number of users connecting from a country suddenly drops to 0, it
might be reasonable to assume the bridge has been blocked in that country. Loesing ultimately
selects this approach and sets this threshold to 32 (corresponding to 25 or more observed connec-
tions, due to rounding), pointing out that even if a country blocks a bridge entirely, the bridge may
misidentify the locations of users connecting from other countries. One reason for this, Loesing
identifies, is inaccuracy in the the GeoIP database used by bridges to identify connecting users’
countries. A connection may appear to come from a country where the bridge is blocked, when
actually it came from a neighboring country. We identify an additional possible reason. Within
one country, a resource may be accessible by some users but blocked for others, as is the case in,
e.g., India where different ISPs apply different censorship policies [SGB20].
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Relative threshold compared to other countries Loesing suggests that if the fraction of users
connecting from a specific country out of all users connecting to that bridge falls below a certain
threshold, we may consider the bridge to be blocked in that country. As Loesing observes, one
issue with this approach is that it is sensitive to changes in other countries. A sudden influx of
users from one country that just blocked vanilla Tor may result in another country’s connection
counts suddenly falling below this threshold, despite no actual change in usage by people in the
second country.

Estimated interval based on history If the number of connecting users decreases suddenly
compared to previous days, Loesing suggests that it might be possible to infer that the bridge has
been blocked. However, as Loesing observes, this is challenging if the bridge is blocked soon
after it becomes available to use. If the number of connecting users from a country was always
low, future low connection counts will not seem unusual. It will simply appear that the bridge is
not used by many people in that country.

Ultimately, Loesing adopts an absolute threshold and proposes considering both absolute and
relative thresholds in future work. While Loesing’s work provides a useful basis for analysis of
bridge reachability based on bridge statistics, we consider analyzing these bridge stats alone
insufficient. In particular, we consider an attack that can prevent detection through analysis of
bridge stats. A censor may learn a bridge line and use it to block regular people from connecting
to the bridge. To avoid detection, the censor can make its own connections to the bridge from
multiple IP addresses within its country (choosing, of course, not to block its own connections)
to artificially inflate the bridge’s connection counts. In this way, the censor can avoid detection
by any analysis of connection counts alone. Due to this limitation, we do not feel it is sufficient
to consider only bridge stats, but we do incorporate them into our solution.

2.2.5 User Reports

Users may submit reports indicating whether or not they can connect to bridges. As discussed
in Section 2.2.1, we do not wish to put users at risk by asking them to perform direct scans
for us. However, these users are already attempting connections to their bridges in the course
of using Tor. Without requesting that they perform any additional tests that could put them in
further danger, we may be able to learn the results of these tests they choose to perform for their
own purposes. Dingledine envisions users submitting the results of their connection attempts
but identifies two concerns [Din11a]. First, users may be identified by the reports. (Even if the
reports do not directly contain personal information about users, it may be possible to build a
fingerprint for a given user based on the set of bridges for which they submit reports.) Second,
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users may submit fraudulent reports. We want to be sure that we can trust the reports submitted
by the user.

Currently, there is not a standard, official procedure for users to report on bridge reachability.
Reports that bridges are blocked are sometimes submitted on the Tor Project forum [Odd21] or
sent to members of the Tor Project [Boc21a, Gus21]. We posit that we can design reports about
bridge reachability that are safe to submit without compromising users’ anonymity while also
limiting the ability of malicious actors to submit fraudulent reports. We incorporate such reports
as a major component of our system.

2.3 Conclusion

This chapter provides background on Lox credentials, relevant information about the operations
of the Lox system and its users, and considerations for designing a system to work alongside Lox.
It also provides background on measuring censorship and discusses considerations for five pos-
sible approaches to detecting when Tor bridges are blocked. In the next chapter, we will describe
the design of our bridge blockage detection system, incorporating the specific considerations
outlined for Lox and two of the censorship detection strategies discussed in this chapter.
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Chapter 3

System Design

This chapter describes the design and goals of our Troll Patrol1 system, which collects bridge
statistics and user reports and analyzes them to infer which bridges are blocked and where. Our
reference Troll Patrol implementation is written in approximately 2,200 lines of Rust code and is
publicly available under a free and open source license. (See Appendix A for more information.)
We include code for an optional simulation feature used for simulation-specific tasks, as
described in Chapter 4, and we use this feature in our evaluation in Chapter 5.

We formalize reports that can be programmatically submitted and processed, and we envision
that these reports will be submitted by the Tor Browser. We specify two varieties of these reports:
negative reports and positive reports. Negative reports indicate that a user was unable to connect
to their bridge (possibly suggesting a censorship event), while positive reports indicate that a
user was able to connect to Tor using their bridge.

If users choose to submit positive reports, we expect the count of valid positive reports we
receive to correlate with the count of connections reported by the bridge in the bridge statistics.
When possible, we pair the two with the goal of improving accuracy. Negative reports help de-
fend against the attack described previously in which a censor can block a bridge but manipulate
bridge stats to make it appear reachable. Even if we observe high numbers of positive reports
and connections according to the bridge, if we also observe a high number of negative reports,
we might be able to conclude that some interference is occurring.

We first describe our threat model, then the design of our negative and positive reports, and
finally considerations for analyzing submitted reports and published bridge statistics to classify
bridges as blocked or not blocked.

1The Norwegian fairy tale “Three Billy Goats Gruff” features a troll who lives under a bridge and eats would-be
crossers of the bridge. Our system “patrols” to find such “trolls” that prevent people from using bridges.
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3.1 Threat Model

We adopt a similar threat model to that of Lox; our adversary is assumed to be a state-level
censor that aims to learn about as many bridges as possible to block them (either immediately
or at some future time) and to learn the identities and social graphs of users. We consider an
additional adversarial motive: a censor that is unable to learn a bridge and block it itself would
still like to disrupt the Lox and/or Troll Patrol systems. If the censor is able to make the Lox
Authority believe that the invite-only bridges it has distributed are blocked, even when they are
not, it can prevent users from gaining trust levels. If the censor is able to hide the fact that it has
blocked bridges from the LA, it can prevent users from migrating to new bridges.

We focus on bridges that may be distributed by Lox and assume that censors learn about
bridges to block by querying bridge distributors or by tricking honest users into sharing their
bridges. While other tactics for bridge discovery exist, such as protocol-level blocking and active
probing as described in Chapter 1, they are considered out of scope for Lox [Tul22, TG23], and
we likewise exclude them from our threat model. Instead, we design our system for bridges that
use pluggable transports that already protect against these kinds of attacks. We also consider
that once a bridge has been identified by a censor, the censor may remember the bridge, even if
we observe only temporary censorship of the bridge (e.g., during a political event). Thus, once
a bridge is determined to be blocked, this conclusion should not be reverted later; Lox should
mark the bridge as blocked and distrust the bridge’s users. Finally, we assume that the Troll
Patrol system is based in a region where its own access to Tor will not be impeded; i.e., it does
not need to use a bridge.

We must consider the possibility that our powerful adversary compromises any or all com-
ponents of the bridge distribution and monitoring infrastructure. In particular, we examine the
potential harm from compromise of rdsys, the Lox Authority, and/or Troll Patrol. Addition-
ally, we note that the Lox Authority and Troll Patrol may be run on the same machine. Thus,
compromise of one system may imply compromise of the other.

3.1.1 Rdsys

Rdsys holds a database of bridges and serves as the backend for Lox. A censor that compromises
rdsys can thus learn (and block) all the bridges known by rdsys. Rdsys only provides bridges
to distributors; by compromising only rdsys and no additional infrastructure, the censor would
know nothing about which users know which bridges. We neither modify rdsys nor design Troll
Patrol to interact directly with it, so our work does not affect the impact of compromise of rdsys.
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3.1.2 Lox Authority

As discussed in prior work on Lox [Tul22, TG23], total compromise of the Lox Authority would
allow the adversary to learn (and block) all the bridges known by the LA. However, Lox protects
users’ social graphs and sets of known bridges even in the event that the LA is fully compromised.
We introduce modifications to Lox to allow integration between Troll Patrol and Lox. We must
take care when implementing these changes to ensure that they do not give an adversary greater
power to censor bridges or learn users’ social graphs or the bridges they know.

3.1.3 Troll Patrol

In case the Troll Patrol system is compromised, we aim to limit the amount of sensitive infor-
mation it has. In particular, we do not provide Troll Patrol with sensitive information about the
bridges known to the LA, and we do not ask users to submit this information. Thus, an adversary
that compromises only Troll Patrol does not learn how to block the bridges. However, some pos-
sible extensions to Troll Patrol that we discuss in Chapter 6 would be most easily implemented
by providing it with a list of bridges. If future changes do result in Troll Patrol having such a list,
a censor that compromises the system can learn and block these bridges.

As we ask users to submit reports about their connection attempts, we must ensure that these
reports do not compromise user privacy by containing identifying information about these users.
Users should identify themselves to the system with no more granularity than identifying the
country from which they attempted to connect to Tor. We should also aim to ensure that user
reports do not create unique fingerprints for users, e.g., based on the set of bridges they know
and report. When a Lox user submits reports, they implicitly reveal to which bucket they belong,
as each bridge is only available in one invite-only bucket; however, each user of that bucket
should know exactly the same set of bridges, limiting the uniqueness of this fingerprint.

While we can limit Troll Patrol’s ability to block bridges and identify or link users, if the
LA trusts Troll Patrol to provide accurate information about which bridges are blocked, then an
adversary that compromises Troll Patrol can disrupt Lox by submitting inaccurate information to
the LA. As it does not learn sensitive information about bridges and does not hold Lox creden-
tials, Troll Patrol cannot actually submit fraudulent user reports; however, a compromised Troll
Patrol system could simply submit a claim to the LA that an unblocked bridge is actually blocked
or refuse to submit a claim that a blocked bridge is blocked.
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Hashed fingerprint CC Date Dist

Proof of bridge knowledge

Nonce

Figure 3.1: The structure of a negative report, where CC is the 2-character country code, and
Dist is the distributor. A complete row corresponds to 32 bytes of data.

3.2 Negative Reports

A negative report is a report that a user was unable to connect to a bridge. Figure 3.1 visualizes
the structure of a negative report, with each row representing 32 bytes of data. Negative reports
are fairly simple. Minimally, they must identify the bridge (which they do by including the
bridge’s hashed fingerprint), the country from which the user attempted to connect (which is
represented as a two-character country code), and the date of the connection attempt (as a Julian
day, meaning a single integer value is used for an entire day). We additionally include the bridge
distributor that was used to distribute the bridge (for example, Lox) so the Troll Patrol system
knows where to send the report for verification in the event that Troll Patrol is repurposed for use
with non-Lox bridge distributors. Reports should be submitted soon after the connection attempt,
ideally on the same date, but we choose to continue accepting them some number of days after
the connection attempt. We select three as the maximum number of days a report is valid after a
connection attempt. This number is somewhat arbitrary, but we note that in the case of negative
reports, users may have extra difficulty establishing a connection to submit their reports.

As described thus far, negative reports contain no secret information and could be submitted
for any bridge by any party. We note that if a censor learns enough information about a bridge
to block the bridge, it can most effectively disrupt the use of the bridge by simply blocking it.
Thus, we are not concerned with the possibility that a censor might learn a bridge and submit
negative reports for it. However, a censor that does not know enough to block the bridge may
be incentivized to submit a large number of negative reports so that Troll Patrol will incorrectly
determine that the bridge has been blocked. If the censor submits enough negative reports for
enough bridges, and the bridge distribution system tries to replace blocked bridges, this could
cause unsustainable bridge churn. When Troll Patrol is used with Lox (or if Troll Patrol is
used with other reputation-based bridge distribution systems), fraudulent submission of negative
reports could disrupt users’ ability to accrue reputation. To prevent the censor from submitting
negative reports for every bridge, we additionally require proof that the submitter should be able
to connect to the bridge.
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SHA3-256 ( date || nonce || bridge line or β )

Figure 3.2: The structure of a proof of bridge knowledge. This hash is 32 bytes long.

3.2.1 Proof of Bridge Knowledge

This proof could simply be a hash of the bridge line (which contains all the information needed
to use the bridge). We somewhat arbitrarily select SHA3-256 as our hash function. For bridges
distributed by Lox, β from the user’s Lox credential may be used instead of the bridge line. We
use a hash of the bridge line rather than the raw bridge line to prevent the Troll Patrol system (or
someone who compromises it) from learning the identities of bridges. However, we consider the
possibility that the censor may learn this hash without learning the bridge line (or bucket) itself
and use the same hash to submit many reports.

To prevent this, we require a nonce as an additional input to the hash. The nonce is provided
as a field in the report, and it makes each report unique. If Troll Patrol receives a report with a
previously observed nonce, the incoming report is simply discarded without verification. This
prevents a censor that does not have knowledge of the bridge line (or bucket) from artificially
inflating negative report counts by submitting duplicate reports. In order to discard reports with
duplicate nonces, Troll Patrol must maintain a set of observed nonces. This set would only grow
over time. To prevent boundless growth, we additionally include the report’s date as an input
to the hash. This allows Troll Patrol to store the nonces used for a specific date, then purge old
observed nonces once it stops accepting reports for the date they were previously used.

The structure of a proof of bridge knowledge can be seen in Figure 3.2.

3.2.2 Delivery

Honest users should not submit multiple negative reports per bridge per day, and unmodified
client software should not permit them to do so. We do not currently provide any cryptographic
restriction to prevent duplicate negative reports (though we suggest a Lox-specific modification
to provide such a restriction in Chapter 6). In case the user is unable to submit their reports before
Troll Patrol performs its analysis on the day of the connection attempt, we allow the submission
of reports from recent days in the past. We choose to accept results dated up to three days in the
past, expecting that each report will arrive either during this period or not at all.

Ideally these reports would be delivered to an onion service (which would provide end-to-end
encryption and server authentication); however, we cannot depend on this. When a user’s bridges
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are blocked, they might be able to request a new open-invitation Lox credential and bridge (or
switch to a different bridge type such as meek or Snowflake) and use their new bridge to connect
to Tor and submit their report. However, we do not assume that bridges distributed with open-
invitation Lox credentials are resilient against bridge enumeration attacks or that users will not
be blocked from using other bridge types; the user’s new bridge may also be inaccessible. We
do assume that the user will be able to submit the reports somehow, noting that the report is
small in size and not particularly sensitive to latency. For example, Troll Patrol might offer
an email address or a domain fronted API for receiving negative reports. Lox also requires a
(possibly high-latency, low-bandwidth) mechanism to contact it outside of Tor, to redeem open-
entry invitations and to perform blockage migration. Troll Patrol could use the same technique
that Lox uses to ensure it can be reached. We leave this implementation detail out of the scope
of this work and simply assume users are somehow able to submit negative reports.

Because we do not guarantee end-to-end encryption at the transport layer, we should sep-
arately encrypt negative reports. While these reports do not contain any inherently sensitive
information, if a negative report being submitted via some high-latency method is observed by a
censor, the censor could copy the nonce from the report and use it in its own well-formed-but-
invalid negative report. (Troll Patrol cannot validate reports itself, so only storing nonces from
valid reports is not a reasonable defense.) If Troll Patrol receives a censor’s fraudulent report
before the user’s genuine report containing the same nonce, the user’s report will be rejected
out of hand. By encrypting negative reports in transit, we prevent this attack. Similarly, nonces
must be large enough to prevent the censor from submitting such invalid reports with all possible
nonces.

The public key used to encrypt these reports should rotate regularly (e.g., daily) for post-
compromise security. We note that this is not for forward secrecy, as reports do not contain any
private information. The only semi-sensitive information in a negative report is its nonce, and
this becomes useless to the censor as soon as the Troll Patrol system receives the genuine report.
We do not prescribe a key distribution method, but it should be possible for clients to obtain the
new key. For example, it might be distributed in the same manner as the Lox encrypted bridge
table (which is assumed to be available to all Lox users). The rotating ephemeral key should be
certified with a long-term signing key, and this key should be pinned within the client software.
(We do not implement this key signing at this time.) We note that the encryption scheme should
not authenticate the client. If an authenticated encryption scheme is chosen, the client should
generate a new random key for each encrypted report to prevent linkage of those reports.

We implement this encryption as follows. Let (x,X) be Troll Patrol’s keypair (where B is
the basepoint, and X = xB). The client:

1. generates an ephemeral X25519 keypair (y, Y ) and computes ECDH(y,X) = xyB
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2. generates a symmetric key with HDKF using SHA3-256: k = HKDF(xyB)

3. generates a random IV and encrypts the report: C = AES-GCM(k, IV, report)

4. sends (Y, IV, C) to Troll Patrol

Decryption follows intuitively. (We note that it is not strictly necessary for the IV to be
random because each k should be used only once. If we want to minimize processing or data
transferred, the IV could simply be 0.) At the end of each day, Troll Patrol generates its own
keypair for the next day and purges old keys that will never be used again. (Keys should be
stored until they cannot be used to decrypt any valid reports. Because reports are still accepted
for a few days after the date they represent, keys must be stored for a few days. Recall that
forward secrecy is not a requirement; the deletion of old keys is simply to reclaim disk space.)

3.2.3 Processing

Negative reports are received throughout the day and possibly during the next few days. As
we do not wish to provide Troll Patrol with sensitive information such as bridge lines or bucket
values, it cannot verify these reports itself. After receiving a report, successfully decrypting it,
and verifying that it has a unique nonce, Troll Patrol stores the report to be processed later. At the
end of the day, Troll Patrol iterates over to-be-processed reports and sends a collection for each
(bridge, country, date) tuple to the bridge’s distributor, which should respond with the count of
valid reports from that collection. Troll Patrol stores these counts to be used to evaluate bridge
reachability on current and possibly future dates.

If new reports are received after the day’s analysis has been performed, the next time Troll
Patrol performs its analysis, it should re-evaluate its previous decision on whether to consider the
bridge blocked for each day starting with the date of the earliest new valid report. Without Troll
Patrol performing this re-evaluation, a censor that learns a bridge could submit many backdated
negative reports for that bridge to inflate the expected number of negative reports. Then, when
the censor actually blocks the bridge and users submit legitimate negative reports, the number
of negative reports might be consistent with historical data for days when the bridge was not
considered blocked, leading Troll Patrol to classify the bridge as reachable.

3.3 Positive Reports

A positive report is a report that a user made a successful connection to a bridge. Figure 3.3 vi-
sualizes the structure of a positive report. Like negative reports, positive reports must minimally
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Hashed fingerprint CC Date

Bridge token

Lox proof
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Figure 3.3: The structure of a positive report, where CC is the 2-character country code. A
complete row corresponds to 32 bytes of data.

contain the bridge’s hashed fingerprint, the user’s country, and the date.

Unlike negative reports, it is a concern that a censor with knowledge of a bridge may block
the bridge but submit fraudulent positive reports to prevent Troll Patrol from identifying the
bridge as blocked. Thus, it is not sufficient to require knowledge of the bucket or bridge line
to submit a positive report. We propose inclusion of an additional “bridge token”, distributed
by the bridge, to demonstrate that a real connection to the bridge occurred. However, these
tokens are both challenging to deploy and insufficient to prevent abuse, so further restriction is
necessary. We additionally harness Lox’s reputation system to restrict submission of positive
reports to highly trusted (L ≥ 3) Lox users. While this restriction makes it more difficult for
censors to submit positive reports, we note that it also significantly limits these reports, which
can only be submitted for bridges distributed by Lox that have been active long enough to have
level 3+ users.

3.3.1 Bridge Token

To prevent positive reports from being submitted when a successful connection has not been
made, we propose that bridges supply a signed “bridge token” containing the bridge’s hashed
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Hashed fingerprint CC Date

Signature

Figure 3.4: The structure of a bridge token, where CC is the 2-character country code. A com-
plete row corresponds to 32 bytes of data.

fingerprint, the connecting user’s country (as detected by the bridge), and the date. We consider
that the user’s country may differ from the country detected by the bridge. This should not
disqualify a report, as GeoIP databases are not always accurate, and we would like for it to
be possible for a user to manually specify the country from which they connect, overriding
the bridge token’s country field. However, the Troll Patrol system may wish to place some
restrictions on this discrepancy. For example, we might accept reports if the detected country
neighbors the reported country but not if the two are on different continents. As bridge tokens
are not currently supplied by Tor bridges, we design Troll Patrol so that initially, positive reports
can be submitted without them. If they become a standard feature of Lox-distributed bridges in
the future, the operator of the Troll Patrol system will be able to simply change a boolean and
require them going forward.

The structure of a bridge token can be seen in Figure 3.4. The signed data in the bridge token
is all contained within the report. To reduce the size of data transmission, rather than include
a full bridge token as described, users could supply only the bridge’s signature over its hashed
fingerprint, the user’s detected country code, and the date. Troll Patrol could then reconstruct
the token from the fields in the user’s report and verify the token’s signature. In the case that the
user’s country differs from the country detected by the bridge, the user would need to specify
both country codes in their report so that Troll Patrol could both verify the bridge’s signature and
treat the report as coming from the user’s actual country.

By requiring a bridge token in each positive report, we can ensure that a successful connection
to the bridge actually occurred. However, we observe that these tokens are insufficient to protect
against a censor that wishes to hide its censorship. A censor could block regular users from
connecting to a bridge but make its own connections (choosing not to block itself) to obtain
bridge tokens and submit positive reports. Thus, additional protection is required.
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3.3.2 Positive Report Proof

We limit positive reports to trusted Lox users, specifically users with Lox credentials with trust
level 3 or greater. This requirement is enforced with a zero-knowledge proof. In order to support
positive reports, we define a new Lox protocol in the main Lox library. Unlike other Lox proto-
cols, this new protocol does not reveal the user’s credential ID and does not result in the issuance
of a new credential. Instead, the user simply uses their credential to issue a zero-knowledge proof
of the fact that they have a credential that can be used to submit positive reports for the given
bridge.

This protocol has no response from the server. The client simply produces a proof, and the
server either succeeds or fails to verify it but sends nothing back to the client in either case. Thus,
the client can include the non-interactive proof in a positive report sent to the Troll Patrol system
to be later forwarded to the LA for verification.

Positive Report Proof Details

We introduce a new Lox credential show protocol to prove that the user is allowed to submit
a positive report for the given bridge. Unlike existing Lox protocols, this does not require re-
vealing the ID Φ or issuing a new credential to the user. Instead, we blind all attributes of the
credential, and the LA simply verifies a Schnorr proof of the commitments to these attributes and
the additional statements being proven, as well as the MAC on the credential.

The user must prove that they have a credential that should be allowed to submit a positive
report for the bridge being reported. Specifically, this is a proof that:

1. The user has a valid Lox credential

2. The user’s credential is level 3 or 4

3. The user’s credential contains a particular bucket (which the LA must verify separately to
contain the bridge being reported)

These statements together provide a stronger limitation: Not only must the user be highly
trusted; they can only use their trusted credential to report bridges represented by that credential.
This prevents a scenario where a user’s bridges become blocked, the user migrates to a new
bucket (causing their trust level to decrease below 3), and the user then uses their old level 3+
credential to submit positive reports for their new bridges. This proof does not directly reveal
any of the fields in the Lox credential, but it allows the Lox Authority, which knows the bucket
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corresponding to the reported bridge, to verify that this is the user’s bucket. It also reveals that
the credential’s level is 3 or 4 but not which of those two values. When verifying a positive
report, the LA must separately verify that the bucket used in this proof contains the bridge being
reported.

We now discuss the way in which each statement is proven.

The first is accomplished by verifying the MAC. The user forms Pedersen commitments to
all of their attributes mi and to Q and computes V :

zi
$← (Z/ℓZ)∗

Ci ← miP + ziA

zQ
$← (Z/ℓZ)∗

CQ ← Q+ zQA
V ← (

∑
ziXi)− zQA

Note here that zL is used to blind mL: CL = mLP + zLA. We will reuse zL in the next step.

The second statement is proven using a range proof. The user proves that their credential’s
trust level mL is 3 or 4 by selecting g ← 4 −mL and proving that g +mL = 4 and g ∈ {0, 1}.
Recall that ℓ is prime. Thus, ∀g ∈ (Z/ℓZ), g2 = g ⇐⇒ g ∈ {0, 1}. To prove g is a bit, the user
first computes commitments to g and g2 as described here:

wg
$← (Z/ℓZ)∗
zg ← zL

yg ← wg + g · zg
Cg ← gP + zgA
Cg2 ← gP + ygA.

Note that zg = zL, the blinding factor for mL. In their Schnorr proof, the user proves the
following:

Cg = gP + zgA (Cg is a commitment to g)

Cg2 = gCg + wgA (Cg2 is a commitment to g2)

Cg2 = gP + ygA (Cg2 is a commitment to g)

The user submits Cg2 in their request. The LA recomputes Cg as CL − 3P and uses it to verify
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the Schnorr proof. Note that

CL = mLP + zLA

= (3 + g)P + zLA

= 3P + gP + zLA

= 3P + (gP + zgA)

= 3P + Cg

Because Cg2 has been proven to be a commitment to both g and g2, it must be that g = g2, and
therefore g ∈ {0, 1}.

The proof for the third statement requires an additional public value, H ∈ G. A new H is
generated deterministically each day based on the date, and the same H is used by all users.
This H must be generated with hash-to-group [BHKL13] to ensure that the discrete logarithm
relationship between H and A is unknown. The user computes D ← mβH and submits this
value. They also include the condition that D = mβH in their Schnorr proof. By verifying
the Schnorr proof, the LA can be sure that the bucket value in the user’s credential was used to
produce D, but the LA must still verify that D is correct. The LA knows which bridges are in
which buckets; it separately retrieves the bucket value corresponding to the bridge being reported
and verifies mβH

?
= D.

Preventing Duplicate Reports

In the current design, it is possible for one user to submit multiple positive reports for one bridge
on one day. It may be desirable to limit these reports to one per credential, which can be ac-
complished in the following way: We add a unique, never-revealed field γ to the Lox credential,
and we restrict reports based on this γ. Whenever the user requests a new credential, this field
should carry over to the new credential. Otherwise, each time the user leveled up or invited a
friend, they would gain the ability to submit an additional report per bridge per day when they are
issued a new credential through the protocol. When the user invites a friend, the invited friend’s
credential will have a new γ, and (after leveling up to level 3) they will be able to submit their
own positive reports. We note that a censor could issue many invitations to itself and wait until it
has leveled up many credentials to level 3 or higher; however, doing so would require the censor
to spend more time gaining trust. If the censor is willing to wait to block a bridge until it has
the ability to submit a certain number of positive reports for that bridge, this restriction would
increase that delay, allowing users to connect unimpeded for longer.

In order to limit reports based on γ, we add three additional reference points, H0, H1, and
H2, corresponding to the indices of bridges in the bucket. We add an index i, a point Di, and
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the condition that Di = mγHi to the proof. When the LA verifies the proof, it must additionally
verify that the bridge being reported has the index i in its bucket and that it has not seen Di

before. Troll Patrol could also reject reports with already-observed Di values, as it does with
duplicate nonces for negative reports.

We observe that this additional restriction does not prevent users from migrating to new
buckets, then using their old credentials to submit positive reports for bridges in their old buckets.
However, there is no harm in this fact. In order to migrate, the LA must have already marked the
bucket as blocked, so new reports for its bridges become irrelevant.

Another observation is that a single bridge may actually be contained within two different
buckets: the open-entry bucket containing only that bridge and the invite-only superset bucket
containing the bridge along with two others. However, this does not mean that a user can submit
two positive reports for the same bridge. In order to submit a positive report using a specific
bucket value, the user must have a Lox credential with that bucket value and a trust level of 3 or
4. Values for open-entry buckets are only contained within level 0 credentials; in order to attain
level 1, the user must migrate to the new invite-only bucket.

Association of Multiple Bridges in One Bucket

If, in a single day, Troll Patrol receives positive reports for multiple bridges sharing the same
D value in their positive report proofs, then Troll Patrol (or an adversary that compromises the
system) can infer that these bridges are in the same bucket. We consider reusing D in fraudulent
positive reports for other bridges as a possible defense. Since Troll Patrol cannot verify reports
itself, these could act as “cover traffic” to prevent Troll Patrol from associating bridges together
by their shared use of D. However, this defense would be insufficient. Troll Patrol could simply
ask the LA to verify the reports one-by-one and associate the bridges in successfully verified
reports that share the same D. If preventing this association is a priority, these fraudulent cover
reports could be submitted, and the LA could refuse to verify a collection of positive reports for
a given bridge, country, and date more than once per day, requiring Troll Patrol to submit all of
its collected reports at once. We do not consider the impact of this association significant and do
not protect against it at this time.

3.3.3 Delivery and Processing

As with negative reports, positive reports are accepted if their dates are no more than some
threshold number (which we set as three) days in the past, and analysis should be redone if
new reports have been received and successfully verified for past days. We note that it is less
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important to accept positive reports with dates more than one day in the past. If a user is able to
connect to Tor, it should not be an issue to submit a positive report soon after making a successful
connection. Our choice to use the same threshold for both types of reports is made for simplicity.

3.4 Analysis

Having collected its data, Troll Patrol needs some way to draw conclusions from it.

3.4.1 Possible Approaches

In Section 2.2.4, we discussed Loesing’s report on testing bridge reachability [Loe11], which
analyzes only bridge statistics, not user reports. Loesing discusses three approaches: an absolute
threshold, a relative threshold compared to other countries, and an estimated interval based on
history. We consider how these approaches could be applied with the addition of user reports.

Absolute threshold Loesing ultimately adopts an absolute threshold due to the simplicity of
this approach. One option would be to set a single threshold for negative reports, in much the
same way. If we receive a requisite number of negative reports (possibly even as few as one),
that may always be sufficient to conclude that a bridge is blocked. However, we note that users
being unable to connect may not reflect an intentional act of censorship. A number of factors
might cause a user to be unable to connect to a bridge at a particular point in time, such as
networking issues on the user’s end or an organizational firewall operating on an allowlist. If a
single threshold is used, it must be selected carefully to ensure that real blockages are detected
as often as possible without falsely detecting random connection failures as censorship.

Rather than being a fixed number, the threshold could be relative to connection counts from
bridge statistics. For example, we might consider the bridge blocked in a country if we receive at
least n/8 negative reports for that bridge, where n is the number of connecting users according
to bridge statistics. However, this could be defeated by a censor making a very large number of
connections to the bridge, thus making the requisite number of negative reports to consider the
bridge blocked very high. We recommend combining the two tests, considering a bridge blocked
if its count of negative reports exceeds some fraction of connection counts or some absolute
threshold, whichever is lower.
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Relative threshold compared to other countries This approach is not very attractive for
bridge connection counts due to its sensitivity to changes in other countries; however, we still
consider its applicability for user reports. It may be challenging to consider report counts rela-
tive to other countries, due to different needs and cultures of people in different countries. For
example, if a country is unlikely to punish its residents for circumventing censorship, users may
be eager to submit reports to ensure that their circumvention tools work as effectively as pos-
sible. On the other hand, if a country has a reputation for harsh repercussions for censorship
circumvention (or if there is simply a strong cultural emphasis on privacy in that country), users
may be much more hesitant to submit any data about their use of the system. (We intentionally
design reports to avoid identifying users; nevertheless, this telemetry should never be collected
from users without their consent.) Due to these possible differences, for the purpose of evaluat-
ing bridge reachability based on report counts, we choose not to consider the number of reports
received from other countries.

Estimated interval based on history This approach is attractive, as it allows us to account for
differences between bridges, rather than assuming that all bridges have similar usage. However,
as Loesing identifies, if a bridge is blocked very soon after being distributed, we will not have
historical data on normal usage. We may conclude that a small number of connections or a large
number of negative reports is standard for that bridge and fail to mark it as blocked.

We propose some combination of these techniques. A crude test such as absolute threshold
should be used initially, to infer whether or not a bridge is blocked while we lack historical data.
After we have collected enough data about normal usage and are reasonably confident that the
bridge has not been blocked yet, we can begin using an estimated interval based on history. In
the next section, we will discuss how this might apply to Lox-distributed bridges.

3.4.2 Analysis for Lox Bridges

For our purposes, Lox-distributed bridges effectively have three stages of life. It should be
possible to evaluate bridge reachability with greater precision in later stages than in earlier ones.

Stage One

The first stage is the period when the bridge is being distributed to new users in an open-entry
bucket. We expect that bridges are most likely to be blocked during this stage, and we will also
have the least historical data on connections to them. Thus, we must primarily draw our conclu-
sion based on generic rules, such as employing an absolute threshold, rather than comparison to
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past trends. As bridges in this stage are new, we expect that they may have very low user counts.
We emphasize that this does not mean that the bridge is inaccessible. We do not want to set a
threshold too low such that all new bridges will be marked blocked immediately. Instead, we
propose assigning greater weight to negative reports during this stage, as these explicitly indicate
a failed attempt to connect.

Recall that positive reports can only be submitted by users with trust level 3 or greater. In
stage one, all users of the bridge are assumed to have trust level 0, so we will not have positive
reports available for our analysis. We do not necessarily want a single negative report to result in
a conclusion of censorship. As discussed previously, a number of factors may prevent users from
connecting to their bridges. However, just one report might be sufficient in some cases. If the
bridge never receives a single connection from a country, but we observe a positive number of
negative reports for that bridge from that country, it is reasonable to conclude that the bridge is
blocked. We propose setting a maximum threshold for the acceptable number of negative reports
and considering a bridge blocked if the number of valid negative reports we receive for that bridge
exceeds this threshold. Additionally, for bridges with low connection counts, we propose scaling
the negative report threshold down based on the connecting user count according to bridge stats.
It should be possible to reduce this threshold in this way to allow a blocked bridge with few
users to be detected even if the number of negative-report-submitting users is very small, but the
threshold should never be increased above the maximum. If the threshold were to be increased
based on bridge stats, then the censor could make a large number of connections to prevent
detection.

Stage Two

The second stage begins after 30 days. When the bridge has remained unblocked for 30 days,
the Lox Authority stops distributing the open-entry bucket and adds the bridge to an invite-only
bucket. After this, we believe that the bridge is less likely to be blocked, as the censor must
now learn about it from an existing user or through trust migration from an already-identified
open-entry bucket. In the latter case, the censor must have been patient and avoided blocking the
open-entry bridge for 30 days. By the time a bridge becomes invite-only, we also have historical
data on the bridge for at least 30 days. We can use this data to provide better analysis. The
minimum number of days before stage two begins should not be lower than the number of days
required for the LA to stop distributing an open-entry bucket, but it may be tuned higher if this
is advantageous, for example, to provide more historical data to the model used for stage two
analysis. The maximum number of historical days of data to consider in the analysis is also
configurable.
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It is important to remember that a censor may block a bridge but make its own connections
to the bridge to artificially inflate the bridge stats. To prevent this attack, it should be possi-
ble to determine that a bridge is blocked based on an increase in negative reports, even if the
bridge-ips reported by the bridge also increase. However, we do not expect every censor
to behave in this way; bridge stats can still help us detect blocking by censors that do not per-
form this attack. We may still be able to learn that a bridge is inaccessible based on a drop in
bridge-ips, even if the people attempting to use that bridge do not submit negative reports.
Thus, analysis in stage two should consider both signals but should allow a “blocked” conclusion
based on negative reports to prevail over an “unblocked” conclusion based on bridge stats.

Stage Three

During the first two stages, we infer whether the bridge has been blocked based on bridge statis-
tics and negative reports, but not positive reports. The third stage begins some configurable
number of days after receipt of the first valid positive report (from a level 3+ Lox user). The
inclusion of non-zero historical counts of positive reports is the only difference between stages
two and three. These can be used to support conclusions made based on bridge stats (with the
rationale that censors are less likely to become highly trusted users, so if the number of positive
reports submitted by highly trusted users correlates with bridge-ips, then it is likely that
the bridge is accessible). While evaluating based on positive reports may help protect against a
censor that aims to hide the bridge’s censorship, it may still be beneficial to evaluate based on
negative reports, in case a censor does acquire level 3+ Lox credentials for the bridge.

3.4.3 Example Analysis

While we do not prescribe a specific approach to analysis, we do provide an example that could
be used. We use this approach when evaluating our system in Chapter 5. For simplicity, we
evaluate negative reports as totally independent from positive signals (bridge-ips and pos-
itive reports), but as noted above, it may be beneficial to, for example, lower the threshold for
considering a bridge blocked according to negative reports if the number of observed connection
counts is 0.

Negative Reports

Across all stages, we apply a simple absolute threshold test for negative reports. If the count
of valid negative reports exceeds some threshold, we consider the bridge blocked. We calibrate
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this threshold with a variable that we call harshness. We support harshness values of 0
through 4. If we receive more than 4 − harshness valid negative reports for a given bridge
from a given country in one day, we consider that bridge to be blocked in that country; the
maximum threshold for negative reports is 4. These values are low because bridges may have
low user counts, especially when they are first distributed. Additionally, we cannot reliably infer
when the number of users of a bridge increases based on bridge stats, as we assume that the
censor can artificially increase this number. It might be reasonable to increase this threshold over
time based on the number of days the bridge has been active, but we instead opt to use a single
threshold in all stages for simplicity.

Stage One

While our stage one analysis primarily relies on negative reports, we also evaluate bridge statis-
tics in this stage using the same harshness parameter. For simplicity, we suppose that each
user of a bridge has a valid Lox credential for that bridge, but we note that users could share
their bridge lines directly with each other in practice. If each user of the bridge holds a valid Lox
credential, then based on Lox’s current configuration (k = 10), we expect no more than 10 users
to know about the bridge in a given open-entry bucket, and these 10 users are not necessarily in
the same country (though it would be ideal for our analysis if they were). If 0 users connect from
a single country, we should see 0 connections reported for that country. If 9 or 10 users connect
from a country, we should see 16 connections reported for that country. The other 8 expected
values will all result in 8 connections reported for a given country. In other words, if a country
has at least one active user of the bridge, we expect the reported value for that country to be 8
most of the time. If the number of reported connections falls from 8 to 0, this could reflect a
single real user who simply decided not to connect on that day.

We outline a decision-making process and parameterize it with harshness:

• If harshness is 4, then we consider the bridge blocked if it reports 0 connections.

• If harshness is 2 or 3, then we consider the bridge blocked if it reports 0 connections
and has ever reported 16 or more connections.

• If harshness is 0 or 1, then we never consider a bridge blocked with this test; Troll
Patrol will only classify a bridge as blocked in stage one due to negative reports.

Our analysis in stage one is illustrated in Figure 3.5.
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Figure 3.5: Example analysis for stage one.
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Figure 3.6: Example analysis for stage two. Stage three has the same process overall, but the
thresholds for bridge-ips may be further reduced based on positive reports.
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Stages Two and Three

In stages two and three, we define a threshold for reported connection counts based on the
bridge’s recent history. We consider setting our threshold to 32, the absolute threshold used
by Loesing’s previous study [Loe11]. However, if the bridge has always had lower connection
counts, we should not consider it blocked for failing to reach this number. Thus, we take the
minimum of the greatest number of connections observed over the prior 30 days and 32. We then
reduce this threshold according to our harshness value. As connection counts are measured
in multiples of 8, we reduce our threshold by (4−harshness) ·8. If the connection count for a
given day is below this threshold, we consider the bridge blocked. We note that if harshness
is 0, it is impossible for this analysis to detect censorship based on reported bridge statistics. If
configured this way, Troll Patrol must rely entirely on negative reports. Figure 3.6 illustrates this
decision-making process.

In stage three, we may have received positive reports from users on the current day; if we
have, we further reduce our threshold by 8 for every 8 valid positive reports received, rounding
the number of positive reports up to a multiple of 8. For example, if we receive 1 to 8 positive
reports, we reduce the threshold by 8. We do not attempt to detect censorship based on a decrease
in positive reports; thus, negative reports are our only defense against a censor that makes many
connections to a blocked bridge from multiple IP addresses.

3.5 Conclusion

This chapter describes the threat model we assume for Troll Patrol and the design of the system.
Troll Patrol collects two types of reports: negative reports, which indicate a failure to connect to
a bridge, and positive reports, which indicate a successful connection. It uses these reports along
with approximate connection counts reported by bridges to infer whether or not a bridge has been
blocked by a censor. We discuss considerations for the analysis used to make this inference and
provide a simple algorithm for the analysis. We will use this algorithm to evaluate Troll Patrol
using a simulation that we describe in the next chapter.
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Chapter 4

Simulation

In order to evaluate our system, we design a simulation in which Lox users join via open-entry
invitations or invitations from trusted users and accrue trust over time, while censors attempt
to learn about bridges and block them. In this chapter, we discuss the choice to evaluate in
simulation and describe the design of our simulation.

It is more appropriate to evaluate our system using a simulation rather than experiment on
the live Tor network. Performing a live test would require ample time to collect meaningful
daily data for all three stages of analysis and some way to ensure that censors blocked some of
the bridges during that time so we can ensure that Troll Patrol detects this blockage. It would
require cooperation from users, who would either need to run a modified Tor client that submits
Troll Patrol reports or manually test their bridges and submit reports. Especially given that we
must somehow ensure that some bridges are discovered and blocked for this experiment to be
successful, such a test may put these cooperating users at risk.

We could ignore reports altogether and evaluate Troll Patrol’s ability to identify blocked
bridges based on publicly available bridge statistics alone. In this case, Troll Patrol’s classifica-
tions could be evaluated against “ground truth” collected via direct scans from a VPS vantage
point or indirect scans. However, the inclusion of reports is one of the primary contributions of
this work, and we hypothesize that negative reports in particular defend against an attack that
Troll Patrol otherwise does not prevent. Thus, to properly evaluate Troll Patrol, it is necessary to
include user reports, making a live test impractical for the reasons described above.

Our simulation involves a number of components: rdsys, the Lox Distributor, bridges, an
extra-infos server, users, a censor, and Troll Patrol. The simulation driver is provided in the
lox-simulation codebase and consists of approximately 1,500 lines of Rust code. It also
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makes use of a Lox client library we wrote for this purpose, consisting of approximately 300 ad-
ditional lines of Rust code. This driver runs alongside the Tor Project’s rdsys code, unmodified,
as well as the Tor Project’s Lox Distributor and our Troll Patrol systems with small modifications
(enabled with the simulation feature), most notably to allow the simulation driver to artifi-
cially increase simulated time for these two components. We provide a Dockerfile to compile all
necessary components, and we use this Dockerfile to build the image used for our experiments
in Chapter 5. All components run in the same Docker container, and all network calls between
components are made as local connections. No part of our simulation models Tor traffic in detail;
we are concerned with whether or not users are prevented from connecting to bridges, not the
specific networking details of establishing or blocking these connections. We provide links to
our code in Appendix A.

This chapter describes the design and role of each component and the overall operation of
the simulation.

4.1 Rdsys

Rdsys provides bridges to the Lox Authority. Our simulation runs the Tor Project’s actual rdsys
code, unmodified, with 3,600 simulated bridge descriptors, all of which are allocated to Lox. We
select 3,600 bridges because this is the number of bridges used to evaluate Lox [Tul22, TG23],
based on the actual number of bridges in Tor’s bridgepool at that time.

4.2 Lox Distributor

The Lox Distributor runs the Lox Authority and the Lox invitation token distributor. It retrieves
bridges from rdsys for the LA to process. The LA partitions these bridges into buckets and
performs the various Lox protocols with users. The Lox Distributor also receives collections of
both negative and positive reports from Troll Patrol, verifies the reports, and returns counts of the
valid reports. When Troll Patrol has determined that a bridge is blocked somewhere, it reports
this to the Lox Distributor. The LA then marks the bridge as blocked and generates a migration
credential for its bucket if applicable. In its current implementation, the LA does not consider
which censor blocks the bridge; if the bridge is blocked somewhere, it considers it blocked for
all users.

We use the Tor Project’s Lox Distributor code, with our modifications to allow it to verify
user reports and mark bridges as blocked when Troll Patrol indicates that they are. We make

41



additional changes for the purpose of simulation, namely providing a mechanism for the LA and
Lox invitation token distributor to artificially advance their own clocks during the simulation.
We set the LA to allocate half of its bridges (1,800) as the sole bridges in open-entry buckets and
half (1,800) to hot spare buckets (resulting in 600 hot spare buckets with 3 bridges each). This is
the default setting for the Lox Distributor and the setting used in Lox’s evaluation [Tul22, TG23].

4.3 Bridges

Rdsys provides bridge descriptors to the Lox Distributor, which in turn parses them into bridge
lines and makes these bridge lines available to users with Lox credentials. We do not rely on
these bridge lines alone, however; we need to store additional information about bridges for our
simulation. The simulation maintains a list of bridges that have been distributed to users with
additional data about their use. These “bridges” do not represent any real implementation of a
bridge. Simulated users do not perform any network calls to connect to these bridges. Instead,
a bridge in the simulation is just an object with a hashed fingerprint that tracks the number of
(simulated) connections made by honest users and the number of (simulated) connections made
by anyone (honest user or censor) during the day. The bridge also tracks statistics for evaluating
Troll Patrol:

• The date it was first distributed to any user (i.e., the date the bridge object was created
within the simulation)

• The date it was first distributed to a user who is not an agent of the censor

• The date the censor first blocked the bridge

• The date Troll Patrol first detected that the bridge was blocked

• The date Troll Patrol first received a positive report for the bridge

4.4 Extra-Infos Server

One of Troll Patrol’s sources of data on bridge reachability is publicly available statistics it
downloads from CollecTor [TP24d] via HTTPS. Of course, statistics for our simulated bridges
are not available from the real CollecTor service, so we run a basic HTTP server locally to
collect and serve this information. At the end of each day, connection data from all bridges is
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formatted in a simplified version of the extra-info format (omitting most data as it is not relevant
for our purpose), and aggregated to form a new record that is made available via this server.
This connection data contains only the bridge’s total number of recorded connections from each
country (rounded up to a multiple of 8) including the counts of connections made by the censor
in that country. If the censor makes its own connections to inflate the reported bridge connection
counts, this fact is not visible to Troll Patrol when it downloads this connection data; Troll Patrol
only sees the inflated number.

4.5 Censor

Censors represent countries that block access to Tor. As Lox considers a global model of cen-
sorship, where a bridge blocked in any country is treated as blocked for everyone, we perform
the simulation using a single censor at a time, i.e., with all users in a single country. We con-
sider multiple approaches to censorship and describe how each type of censor operates within
the simulation.

4.5.1 Speed

While some censors will block bridges as soon as they learn about them, others may take time.
This may be due to bureaucracy involved with implementing a new block, or the censor may have
a specific goal it wishes to accomplish for which there is a benefit to waiting. For example, the
censor might wish to acquire a highly trusted Lox credential, and it considers allowing users to
access the bridge in the meantime worthwhile. Alternatively, the censor may allow access to Tor
via bridges (or even publicly listed entry nodes) under normal circumstances but suddenly block
Tor and all identified bridges at specific times, such as before elections. We separate censors into
three categories:

Fast Fast censors block bridges immediately.

Lox Lox censors wait to block a bridge until they have access to a Lox credential with trust
level 3 or greater for that bridge, so that they can either submit fraudulent positive reports to hide
their censorship or migrate to a new bucket when the current one is blocked.

43



Random Random censors wait a random number of days. This random number (ranging from
1 to 364) is selected when the censor is initialized and represents the idea that there is some
political event occurring within the year. During the event, the censor blocks all bridges known
to it. The event lasts some configurable number of days, after which the censor generates a new
random future date for the next political event and stops blocking bridges until that future date.

4.5.2 Secrecy

Another question is whether (and how) the censor attempts to hide its censorship. We envision
that a censor might block a bridge but make its own connections and/or submit false positive
reports to make it appear that the bridge is still being used.

Overt Overt censors make no attempt to hide which bridges they block.

Hiding Hiding censors attempt to closely replicate normal connection and positive report num-
bers to avoid notice (even by manual review). Whenever a hiding censor blocks a connection to
a bridge, it makes its own connection to the bridge; we simulate this by incrementing the number
of total connections the bridge observes at that time but not the number of real connections from
users. If the censor is able to submit positive reports for the bridge (i.e., the censor has a Lox
credential with level 3 or greater with the bucket value of the bridge’s bucket), it also submits
these reports to hide the censorship. (The censor’s connections to the bridge occur at the time
it blocks the connection attempt, but the positive reports are submitted at the end of the day.)
We note that this implementation is simple but has the flaw that if users naturally choose not
to attempt connections to the bridge because their past attempts have not been successful, the
censor will also stop making its own connections. Thus, this may not be an effective strategy for
censor secrecy in our simulation. A more sophisticated censor could build a statistical model of
standard user connection behavior to replicate after blocking a bridge, but we do not implement
such a technique at this time.

Flooding Rather than simply replicating the number of real connections that would be made
normally, flooding censors make a (configurable) large number of connections to all bridges
known by them, as well as submitting a (configurable) large number of positive reports, or as
many as possible. In Section 3.3, we discussed a technique for limiting positive reports to one
per bridge per Lox credential per day. We do not implement this technique in our reference Troll
Patrol implementation, but for the sake of simulation, we include a configuration option to enable
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this restriction. In this case, the censor will submit no more positive reports for each bridge than
it has Lox credentials containing that bridge’s bucket value.

4.5.3 Totality

Censors may not simply block a bridge for everyone. A censor may block a bridge for only some
users, or it may apply a censorship policy that does not completely prevent access but acts as a
significant deterrent (for example, by slowing down traffic to a bridge). We classify censors into
three categories:

Full Full censors simply block known bridges for all users.

Partial Partial censors block only some percentage of connection attempts to known bridges.
Censorship may not be uniform across a country. The censor may decide to probabilistically
block only some connections, or it may be that different ISPs within a country have different
censorship policies, as is the case in India [SGB20]. In our implementation, we model different
ISPs implementing different censorship policies, meaning we expect that an individual user will
either be in the area of censorship and thus unable to connect or not in the area of censorship and
thus able to connect. (For simplicity, we do not account for users moving from place to place
where they may use different networks.) The percentage of users whose connections are blocked
by the censor in the simulation is configurable.

Throttling Throttling censors make connecting painful for users by slowing them down. This
technique has been employed, for example, in Russia to discourage people from connecting to
Twitter [XRS+21]. In this case, users’ connection attempts may succeed, so the bridge should
report the connections in its bridge-ips, but some percentage of users will consider the bridge
not to work properly and (if those users submit reports) submit negative reports for the bridge.
We make this percentage configurable as well.

4.5.4 Bootstrapping Period

Lox recommends a bootstrapping period, during which open invitations are not publicly avail-
able, and only trusted people are invited to participate in Lox. The goal of this period is to ensure
that if Lox’s open-entry mechanism is overwhelmed by the censor, users can still join invite-
only bridges. Indeed, we observed in early iterations of this simulation that the censor would
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quickly enumerate all the bridges available via open invitations. In fact, because open invitations
are distributed to k = 10 users in a row, the censor’s best technique for enumerating the open-
entry bridges is requesting all the open invitations that are available each day, to rotate through
and learn all the bridges available that day. This results in users being unable to access bridges
not because the censor blocks them but because the Lox invitation token distributor runs out of
invitation tokens to distribute to prospective honest users.

We build into our simulation the assumption that the censor simply wins the open invitation
game by claiming all the remaining open invitations, and we combat this with a bootstrapping
period. For a configurable number of days, the censor does not act at all within the simulation.
During this time, users can join normally with open invitations, use bridges, level up, invite
friends, and so on. Leveling up in Lox requires long wait times; starting from level 0, a user
must wait a minimum of 128 days to rise to level 4. Thus, our simulation requires a long boot-
strapping period in order to build up some base of very highly trusted users. Lox could offer
faster approaches to bootstrapping, such as providing trusted users with special open invitations
that allow them to join with elevated trust levels, as Tulloch and Goldberg recommend [TG23].
However, such a change should be implemented in Lox, not in our simulation. After the boot-
strapping period ends, the censor obtains as many open invitations as possible for one bridge
(as it might learn one bridge in use by an actual user this way), and then open invitations are
simply disabled for users and the censor alike for the remainder of the simulation. We discuss
this decision further in Section 4.9.

One implication of open invitations being unavailable to users (either because the censor
claims them all or because we disable open invitations) is that after the bootstrapping period
ends and all users of open-entry buckets have migrated to invite-only buckets, the number of un-
blocked buckets decreases over time as the censor learns new buckets and blocks them. Without
open invitations, users have no way to learn new bridges except through invitation to existing
buckets or migration to new buckets. In the latter case, the previous bucket must be blocked,
and all eligible users migrate to the same new bucket, causing no net increase in the number of
unblocked buckets. Eventually, users are unable to migrate, either because they have observed
too many blockages to level up to level 3 or because the censor blocks their buckets before they
can reach level 3. These users are cut off and can only rejoin Lox via an invitation to an existing
bucket. In our implementation, the censor has some positive probability of being invited to a
given bucket, so over many days it learns most or all of the buckets in use. To address this, it
may be necessary to provide some additional method of distributing new buckets, such as having
highly trusted individuals outside the country share invitations with trusted contacts within the
country. We do not implement this method at this time; such a method should be implemented
by Lox itself rather than just being part of our simulation.
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4.6 Users

Users have Lox credentials, which they use to learn about bridges and connect to them. Each user
must have a primary Lox credential at all times, and (in the event that their primary credential’s
bridges are not reachable) they may have a secondary credential as well. Some users cooperate
with the censor by providing bridges to block and Lox credentials to abuse. We call these users
“agents” of the censor. For our simulation, we assume that the behavior and motivations of a
censor agent will be very different from those of an honest user.

4.6.1 Censor Agents

We assume that the objective of a censor agent is to learn useful information (bridge lines and
high-level Lox credentials) for the censor, not to actually use Tor. Whenever such a user learns a
bridge line or Lox credential that might be used to submit positive reports, they provide it to the
censor.

Each day, each censor agent downloads their bucket and ensures that the censor knows all
the bridges in the bucket. If the agent has a Lox credential that is eligible for trust promotion
or level up, they perform this protocol. If the LA has determined that their bucket is blocked,
however, they attempt to migrate to a new bucket and (if successful) immediately provide their
new bucket’s bridges to the censor. Finally, if the agent’s credential has any invitations available,
they immediately use all of them to invite additional censor agents. Recall that Lox adds invited
users to the inviting user’s bucket, preventing the censor from learning additional bridges in this
way. While this does not allow the censor to learn additional bridges, it may allow it to eventually
hold more high-level Lox credentials. In practice, this may not actually be useful to the censor.
We discuss this further in Section 4.9.

4.6.2 Honest Users

Each day, a given honest (non-censor-agent) user may or may not attempt to use Tor via bridges.
The probability of a user attempting a connection is configurable. If the user decides to connect
to Tor, they attempt to “connect” to each bridge in their bucket to see which ones are accessible.
This choice for users to test all their bridges when connecting to Tor is consistent with current
Tor client behavior. There is an open issue [TP24g] to limit the number of such test connections
users perform; if such a change is adopted, future evaluations should be adapted accordingly.
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If the censor knows the bridge, and its configuration indicates that it should block the bridge
at the current time, the connection is unsuccessful. Additionally, with some configurable prob-
ability the connection will be unsuccessful even if the censor does not block the bridge. (This
models, e.g., network errors.) In some rare cases, it may be beneficial to set this probability very
high. A study by Zhu et al. observed significant slowdowns and packet loss for transnational In-
ternet traffic entering China during some period of the day [ZMW+20]. This study found average
daily packet loss rates from 5–15% and peak loss rates as extreme as 50%. If we were modeling
China only during such periods, it may be reasonable to assume many response packets from the
bridge to the user will be dropped, resulting in a high rate of connection failure. However, this is
extremely unusual; in most cases, the probability should be very low. During no-slowdown time,
the aforementioned study observed a 0.28% packet loss rate in connections from San Francisco,
California to each of Singapore and Beijing. In the event of connection failure, users in our sim-
ulation also perform some configurable number of retries, only falsely detecting that the bridge
is blocked if all attempts fail. We do not model connections in greater depth than determining
whether or not they are successful; the networking details of establishing real Tor connections
are irrelevant to this evaluation.

The user may submit positive reports in the event of successful connections (if the user has a
level 3 or higher Lox credential) and negative reports in the event of unsuccessful connections.
Rather than being a probabilistic event each time the user attempts a connection, whether or not a
user submits reports is determined only once, when the user is instantiated within the simulation.
If a user submits reports, that user submit reports every day they attempt to connect to bridges.
This emulates users being prompted for consent when they first use Lox so that their client can
automatically submit reports for them, rather than users manually submitting their reports each
day. For simplicity, our simulation assumes that users consent to either both or neither type of
reports, but we note that in a real deployment, users should be given the option to consent to
either individually. The probability of users granting consent is configurable.

Each day the user decides to use bridges, they first re-download the bucket corresponding
to their primary credential to learn any replacement bridges and determine whether they still
have a bucket reachability credential. The user’s bucket is contained in the encrypted bridge
table, a list of encrypted buckets that Lox assumes will be made available to all users through
some mechanism that the censor does not effectively block. Thus, even if the user’s bridges
are all blocked, we assume that the user can obtain their updated bucket and check for a bucket
reachability credential. (For the purpose of implementation in the simulation, the user downloads
this table directly from the Lox Distributor.)

The user attempts to connect to each bridge in their bucket. If these connections all fail, the
user attempts to perform a blockage migration. If the user is unable to migrate, they solicit an
invitation from other existing users to rejoin Lox with a new level 1 credential. For simplicity
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of implementation, the simulation maintains a global pool of invitations for honest users. When
users are ready to invite friends, they add an invitation to this global pool so that it can be used
by the next honest user who needs one. When users attempt to redeem invitations from the pool,
they try as many invitations as needed until they are able to redeem one or the pool is depleted.
(If invitations are more plentiful than users requiring them, they may expire. This is why the
user may need to try multiple to find an unexpired invitation.) If the user is able to redeem an
invitation, they replace their old credential with the new one they obtain in this way.

If the user is unable to redeem an invitation or if they still cannot connect with their new
bridges, they fall back to a secondary credential. The secondary credential is a level 0 credential
the user obtains as a backup for their primary credential. As long as their secondary credential
remains level 0, they do not replace their primary credential with it, instead holding both simulta-
neously. If the user does not already have a secondary credential, they request a new open-entry
invitation token and redeem it to obtain a new level 0 credential. (Of course, they are only able
to do this if open invitations have not been disabled.) The user obtains the secondary credential’s
bucket and attempts to connect to its bridge. If this connection also fails, the user discards the
secondary credential in preparation for the next day, when they will request another.

After attempting to connect to their bridges, level up, and/or migrate, the user may invite
friends. For each invitation their credential is capable of producing, the user has some config-
urable chance of choosing to generate the invitation. With some additional configurable proba-
bility, the user is tricked into giving their generated invitation to a censor agent, in which case
this new censor agent user is added immediately to the simulation. This chance is greater for
lower-level users. We apply a multiplier to the configurable probability of inviting a censor agent
in this way:

• A level 2 user has a 1× probability of inviting a censor agent.

• A level 3 user has a 0.5× probability of inviting a censor agent.

• A level 4 user has a 0.25× probability of inviting a censor agent.

This is based on the assumption that honest users with higher trust levels will be more cautious
with their invitations and more likely to have trustworthy friends. If the invitation does not go to
a censor agent, it is added to the simulation’s global pool of available invitations.

At the end of the day, some number of new users attempt to join Lox. This number is
randomly generated within a configurable range. These new users first attempt to join using
invitations from the global pool. If no working invitations are available, they instead attempt to
join via open invitations, provided open invitations have not been disabled.
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4.7 Troll Patrol

Troll Patrol receives negative and positive reports from users and downloads the aggregated extra-
infos file from the past day (which contains each bridge’s individual extra-info record for that
day). It sends the reports to the Lox Distributor for verification and stores the resulting counts.
Troll Patrol then goes through the list of bridges for which it has data and for each bridge evalu-
ates whether or not the censor blocks that bridge. It reports the blockages to the Lox Distributor
so the LA can mark these bridges as blocked. We use our reference Troll Patrol implementation
in the simulation, with some simulation-specific customizations that most notably allow us to
simulate the passage of time.

4.8 Simulation Operation

The simulation takes place over a configurable number of artificial days. Each day, the various
parties take their actions. Users act first. Only one user acts at a time, and the order of user
turns is randomized each day. Each honest user may attempt to use Tor via bridges, level up
their credential, request a new credential, submit reports to Troll Patrol, and/or produce new
invitations (which are either used immediately to add new censor agents to the simulation or
added to the global invitation pool), as described in Section 4.6. Censor agents do not attempt
to use bridges or submit reports to Troll Patrol, but they may perform Lox credential operations
including inviting censor agent friends.

At the end of the day, some number of new users attempt to join the simulation by obtaining
Lox credentials. They join using invitations from the global invitation pool if they are able;
if not, they attempt to join with open invitations. Prospective users who are unable to obtain
working invitations, for example because the global invitation pool has been depleted and the
bootstrapping period has ended, are added to a backlog to try again the next day.

After all user actions have been taken, the censor performs its end-of-day tasks. If the censor
attempts to hide its censorship by flooding connections, it does so at this time. (Hiding censors
instead make their false connections when they block users’ connection attempts.) Both flooding
and hiding censors submit as many positive reports as possible, up to a configurable maximum,
at this time. Then, if the censor’s speed is random and its period of censorship has come to a
close, it sets a new future date to begin blocking again. Once the censor has been given the
opportunity to inflate bridges’ connection counts, the bridges send their reports of connections
for the day to the extra-infos server and reset these counts for the next day. Troll Patrol then
downloads the aggregated extra-infos file containing all the bridges’ connection counts, sends
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the reports it has collected during the day to the Lox Distributor for verification, classifies which
bridges it believes to be blocked, and sends this information about bridge blockages to the Lox
Distributor. The LA marks those bridges as blocked. Finally, time is artificially advanced to the
next day, and the daily tasks begin again.

4.9 Optimizations

As the number of users within the simulation grows, the simulation becomes more and more
unwieldy, dramatically slowing down. In order to achieve faster simulation runs, we make two
main optimizations. In this section we document these optimizations and discuss their impact on
the censor’s abilities.

4.9.1 Disabling Open Invitations

First, we discuss our choice to disable open invitations after the bootstrapping period. We con-
sider that there are three ways we could reasonably model open invitations after the censor begins
acting:

1. Allow the censor to request some but not all open invitations

2. Allow the censor to request all the open invitations

3. Disable open invitations

The second assumes a stronger censor than the first. Indeed, we assume in our work that the
censor has great technical power and can overwhelm open bridge distribution systems. Thus,
we would opt for the second option over the first. In the case that the censor requests all open
invitations, it learns at most one new bridge that is distributed to honest users. After that point, by
requesting new open invitations, the censor learns only new bridges that will never be distributed
to honest users in open-entry buckets. However, we consider that the censor may learn new
bridges by keeping its level 0 Lox credentials until it can perform a trust migration to a superset
bucket that is shared with honest users. We acknowledge that by closing off open invitations, we
are weakening the censor by preventing this method of infiltrating buckets.

Nevertheless, we believe that our choice is reasonable. We note that if Lox is deployed in a
country where the censor is expected to enumerate open bridges, it may be prudent not to offer
open invitations at all, and instead to start with bootstrapping and then just rely on trust networks,
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or to disable open invitations at the first sign of censorship. We model something closer to this
scenario by closing off open invitations when the censor begins acting instead of allowing the
censor to claim all the remaining open invitations. We believe that our simulation is still useful
for modeling post-bootstrapping Lox in an invitation-based context.

4.9.2 Reducing the Number of Censor Agents

Because one user can invite multiple friends to join their bucket, the number of users of a given
Lox bucket can grow exponentially. In our simulation, this does not happen for honest users; the
maximum number of prospective non-agent users grows linearly, and invitations from the global
pool are only redeemed to add new users when there are prospective honest users who would
like to join. However, the number of censor agents does grow exponentially if the censor is not
prevented from inviting friends. The censor can learn more Lox credentials by introducing as
many censor agents as possible into the simulation. However, learning new Lox credentials is
only actually beneficial to the censor up to a certain point.

Censors can use Lox credentials for three purposes:

1. to migrate from blocked buckets to new buckets, thereby learning more bridges to block

2. to submit positive reports

3. to invite more censor agents and obtain more Lox credentials

The first purpose is the only one that actually benefits the censor in our simulation. In some
situations, submitting positive reports may be useful to the censor, but in the sample analysis we
use in our experiments (described in Section 3.4.3), a censor that attempts to hide its censorship
can do so perfectly without the use of positive reports, rendering positive reports useless for the
censor. Against a different classifier, it may be beneficial to submit more positive reports, and
we allow the censor to hold a configurable maximum number of Lox credentials to facilitate this.
The censor can invite more censor agents to obtain more Lox credentials, but doing so does not
help the censor learn more bridges. Due to Lox’s inheritance properties, the new agent will have
the same bucket of bridges and the same number of observed blockages as the user who invited
them, along with a strictly lower trust level.

With this insight, we can drastically reduce the number of censor agents the simulation needs
to track. We make the following optimizations. First, we only create a new censor agent if the
new agent’s Lox credential would correspond to a bucket that has been distributed to honest users,
has not already been marked as blocked by the LA, and for which the censor does not already
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have its maximum number of useful Lox credentials for submitting positive reports. Second, if a
censor agent’s bucket has been marked blocked, but the censor agent is below level 3 and cannot
migrate to a new bucket, we remove the agent from the simulation. Once the agent’s bucket has
been blocked, they will forever be unable to level up, and they lose their utility to the censor.

4.10 Conclusion

In this chapter, we describe a simulation we design. In this simulation, Lox users in a country
attempt to use Tor via bridges, and a single censor attempts to learn these bridges to block the
users’ access to Tor. Users submit reports to Troll Patrol indicating the success or failure or their
connection attempts, and bridges publish usage statistics. Troll Patrol makes daily classifications
regarding bridge reachability based on these sources of data and reports them to the Lox Distrib-
utor. In the next chapter, we will use this simulation to evaluate Troll Patrol’s effectiveness as a
classifier of bridge reachability.
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Chapter 5

Evaluation

In this chapter, we discuss our use of the simulation described in the previous chapter to evaluate
Troll Patrol’s ability to detect blocked bridges. We aim to learn how reliably our classifier is
able to detect censorship while avoiding misdetections and what impact the addition of reports
from users (rather than only relying on usage statistics reported by bridges) has on its ability to
perform this detection.

5.1 Experiment Setup

To evaluate the performance of Troll Patrol, we performed two sets of simulations. In the first,
we varied the probability of users submitting reports to allow us to evaluate the impact of these
reports. In the second, we varied the harshness of our classifier to evaluate its overall ability to
detect censorship. We used a total of 41 unique configurations, as described below. Two configu-
rations appeared in both experiments (resulting in 43 configurations), and for each configuration,
we ran the simulation five times, resulting in 215 total trials. We divided these into 7 batches.
The greatest number of trials in a single batch was 34, and the smallest number was 25. Each
batch ran on an Intel Xeon E7-8860 at 2.20GHz with 18 cores (36 hyperthreads), with each trial
running in its own Ubuntu 24.04 Docker container. Each trial ran for 500 simulated days. Our
highest observed RAM usage (measured by Resident Set Size) during any single simulation run
was around 688 MB.

In each trial, rdsys provided 3,600 bridges to the Lox Distributor. The Lox Distributor was
run in its default configuration, including partitioning half the available bridges into open-entry
buckets and the other half into hot spare buckets and distributing each open-entry invitation to
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at most 10 users. Each day in each trial, 0 to 20 new prospective users attempted to join Lox
via either an invitation from an existing user or an open-entry invitation. Each trial began with a
180-day bootstrapping period. After the censor’s first day, users stopped requesting open-entry
invitations; after 180 days, the only way for new users to join Lox was through an invitation from
an existing user.

We used two types of censors in this experiment: overt (making no effort to hide censorship)
and flooding (making many connections to blocked bridges to hide censorship). With its current
analysis, Troll Patrol detects that a bridge is blocked only if it receives a certain number of
negative reports for that bridge or if the bridge’s reported connection count falls below a certain
threshold. This threshold for connection counts may be reduced if Troll Patrol receives valid
positive reports, but it is never greater than 32. Reported connection counts are rounded up to
multiples of 8, so as long as the censor makes at least 25 connections to each bridge it blocks
each day, Troll Patrol can only detect censorship if users submit negative reports. We assumed
that users can always submit negative reports, so the censor can only increase connection counts
(and possibly submit positive reports), making flooding its strongest possible defense against
detection.

Both censors were fast (blocking bridges immediately upon learning them) and full (blocking
bridges for all users, rather than blocking only a fraction of users or throttling connections instead
of blocking them outright). We note that Lox limits the harm that can be caused by a patient
censor. A patient censor can submit positive reports, but as discussed, these are not helpful in
evading detection. A censor agent can invite friends, but these friends join the same bucket, so the
censor cannot learn new bridges this way. The only real benefit of patience for the censor is that if
it can obtain a credential of level 3, it can block the bucket’s bridges, migrate to the replacement
bucket, and block that bucket’s bridges as well. This is an effective tactic for eventually cutting
off access to Tor for the users of that bucket, but it requires the censor to first allow those users
to connect unimpeded for at least 42 days while the censor levels up from level 1 to level 3. By
choosing a fast and full censor, we model a censor that aims to minimize the overall number of
user-hours of bridges, rather than comprehensively block every possible bridge.

In our first experiment, we varied the probability of users submitting reports and measured
the percentage of blocked bridges that were successfully detected by Troll Patrol and the number
of days it took to detect the blockage. For this set of experiments, we set our harshness value
to 2, meaning that Troll Patrol detected that a bridge was blocked only if it received 3 or more
valid negative reports for that bridge in one day or if the bridge’s daily reported connection
count fell below a certain threshold that was never greater than 16. In our second experiment,
we selected 0.25 as the probability of users submitting reports and varied the harshness of our
classifier to gain insight into Troll Patrol’s tradeoff between precision and recall and to provide a
recommendation for calibrating the classifier. Table 5.1 summarizes the configurations for both
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Table 5.1: The configurations used in our experiments. We did not perform trials with a flooding
censor and 0 probability of users submitting reports because Troll Patrol is incapable of detect-
ing censorship under these conditions. Both experiments use identical configurations for both
flooding and overt censors when harshness is 2 and the probability of users submitting reports is
0.25.

Experiment Censor Harshness Probability users submit reports
1 Overt 2 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1
1 Flooding 2 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1
2 Overt 0, 1, 2, 3, 4 0.25
2 Flooding 0, 1, 2, 3, 4 0.25

experiments.

From the design of our classifier, we know that positive reports cannot help Troll Patrol detect
censorship, but we conjectured that they might allow it to avoid misclassifying accessible bridges
as blocked. To test this, when Troll Patrol evaluated a bridge in stage three and concluded that it
was not blocked, we had it also evaluate the bridge as if it was stage two (i.e., ignoring positive
reports) and indicate if the bridge would have been classified as blocked without the positive
reports.

5.2 Results

We focus on reporting statistics relevant to Troll Patrol’s ability to detect censorship rather than
the efficiency of our Troll Patrol implementation, noting that Troll Patrol only needs to classify
each bridge once per day, so efficiency is not a major concern. Assuming it is an accurate clas-
sifier, Troll Patrol makes many classifications on unblocked bridges but does not make many
classifications on bridges after they become blocked. Specifically, once Troll Patrol has deter-
mined that a bridge is blocked, it assumes that the censor knows the identity of the bridge and
will not forget this information; thus this classification should not be reverted. If Troll Patrol
fails to detect that a bridge is blocked one day, it tries again the next day, but if it falsely detects
that a bridge is blocked, it never revisits this decision. For this reason, we do not consider each
instance of Troll Patrol classifying a bridge. Instead, we consider whether or not Troll Patrol
makes the correct classification about each bridge. We consider Troll Patrol’s classification for a
bridge as:
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• a true positive if the censor blocks the bridge and Troll Patrol classifies the bridge as
blocked within some maximum number of days

• a true negative if the censor never blocks the bridge and Troll Patrol never classifies the
bridge as blocked

• a false positive if Troll Patrol classifies the bridge as blocked but the censor has not actually
blocked the bridge (even if the censor later does block it)

• a false negative if the censor blocks the bridge but Troll Patrol fails to classify the bridge
as blocked within some maximum number of days

If Troll Patrol correctly detects that a bridge is blocked, but it takes many days to do so, this
hardly benefits users. For this reason, we set a maximum number of days for Troll Patrol’s detec-
tion to be considered a true positive, and we also present the number of days (within that range)
Troll Patrol took to detect blockages. We somewhat arbitrarily select the maximum number of
days for Troll Patrol to detect censorship as 10. Plots of the results from our experiments are
provided in Figures 5.1 and 5.2, and the full results are provided in Tables 5.2, 5.3, 5.4, and 5.5.
We plot precision (how often Troll Patrol is correct when it claims that a bridge is blocked) and
recall (the percentage of blocked bridges that Troll Patrol is able to correctly identify) for both
experiments. For the first experiment, we find that precision varies only within a small range, so
we also plot recall on its own. We present the number of days required to detect censorship as
violin plots to demonstrate the density of our results, as they are not normally distributed. From
Figures 5.1c and 5.1d we can see that even if 100% of users submit negative reports, Troll Patrol
is less likely to detect censorship by a flooding censor than by an overt one, and by comparing
the violin plots in Figures 5.1e and 5.1f, we can see that when it does detect this censorship, it
often takes longer to do so.

In our experiments, we observed 0 instances in which Troll Patrol classified a bridge as not
blocked only due to positive reports. In other words, users submitting both negative and posi-
tive reports was equivalent in our experiment to users submitting only negative reports; positive
reports had no effect whatsoever.

5.3 Discussion

We first discuss the overt censor in the first experiment. Of the bridges that were correctly
detected by Troll Patrol as blocked by the overt censor, the vast majority were detected blocked
within one day, as can be observed in Figure 5.1e. We see two areas with observable density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: These plots show data from our first experiment. Troll Patrol’s harshness is held
constant at 2, and the probability of users submitting reports is varied.
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(a) (b)

(c) (d)

Figure 5.2: These plots show data from our second experiment. The probability of users submit-
ting reports is held constant at 0.25, and the harshness of Troll Patrol’s classifier is varied.
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Table 5.2: Results of the first experiment with the overt censor, specifically the mean and stan-
dard deviation number of true positives, true negatives, false positives, and false negatives for
each set of trials. The independent variable in this experiment is the probability of users submit-
ting reports.

Prob.
users

submit
reports

True
positives

True
negatives

False
positives

False
negatives

Precision Recall

0.0 410±30 13±4 1±1 36±3 0.999±0.002 0.92±0.01
0.01 430±20 20±10 2±2 28±4 0.996±0.004 0.94±0.01
0.05 400±100 10±10 2±1 30±10 0.996±0.002 0.93±0.02
0.1 410±10 13±5 2±1 30±10 0.995±0.002 0.93±0.02

0.15 460±40 22±4 2±1 30±10 0.996±0.002 0.95±0.02
0.2 420±30 20±10 1±1 19±5 0.998±0.002 0.96±0.01

0.25 490±30 20±10 2±2 24±4 0.997±0.003 0.95±0.01
0.3 490±20 20±10 1±2 16±5 0.997±0.004 0.97±0.01

0.35 470±20 22±5 0.6±0.5 20±10 0.999±0.001 0.96±0.01
0.4 480±50 30±10 1±1 10±10 0.998±0.003 0.98±0.01

0.45 510±40 20±10 1±1 12±3 0.997±0.002 0.98±0.01
0.5 510±20 30±10 1±1 20±10 0.998±0.002 0.97±0.01
0.6 500±40 20±4 1±1 9±4 0.999±0.002 0.98±0.01
0.7 490±40 20±10 1±1 10±10 0.998±0.001 0.98±0.01
0.8 520±40 30±10 0.4±0.5 7±3 0.999±0.001 0.99±0.01
0.9 500±100 23±5 1±1 6±4 0.998±0.002 0.99±0.01
1.0 520±40 20±10 2±2 6±3 0.997±0.003 0.99±0.01
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Table 5.3: Results of the first experiment with the flooding censor, specifically the mean and
standard deviation number of true positives, true negatives, false positives, and false negatives
for each set of trials. The independent variable in this experiment is the probability of users
submitting reports. When Troll Patrol does not detect that bridges are blocked, Lox does not
allow users to migrate to new bridges, so the number of overall bridges in the simulation does
not grow. This accounts for the low number of overall bridges when the number of positive
classifications (both true and false) is low.

Prob.
users

submit
reports

True
positives

True
negatives

False
positives

False
negatives

Precision Recall

0.01 30±10 2±2 1±1 180±10 0.96±0.04 0.13±0.03
0.05 180±10 20±10 1±1 160±20 0.996±0.004 0.53±0.04
0.1 300±20 20±10 2±1 120±20 0.995±0.003 0.72±0.04
0.15 370±30 40±10 2±2 90±20 0.996±0.005 0.8±0.04
0.2 440±20 40±10 1±1 70±10 0.997±0.002 0.86±0.01
0.25 470±20 42±3 1±1 60±10 0.997±0.002 0.89±0.01
0.3 450±30 40±10 2±2 50±10 0.997±0.004 0.9±0.02
0.35 480±20 30±10 2±1 40±10 0.996±0.003 0.92±0.01
0.4 500±30 30±10 1±1 40±10 0.998±0.002 0.92±0.01
0.45 500±30 40±10 2±2 40±10 0.997±0.004 0.93±0.02
0.5 510±30 40±10 2±2 31±3 0.996±0.003 0.943±0.004
0.6 520±30 30±10 1±1 26±4 0.998±0.002 0.95±0.01
0.7 500±20 30±10 2±2 20±10 0.997±0.004 0.96±0.01
0.8 550±50 30±10 2±1 17±4 0.997±0.003 0.97±0.01
0.9 530±20 40±10 0±0 20±10 1.0±0.0 0.96±0.01
1.0 560±20 30±10 1±1 20±10 0.998±0.001 0.97±0.01
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Table 5.4: Results of the second experiment with the overt censor, specifically the mean and
standard deviation number of true positives, true negatives, false positives, and false negatives
for each set of trials. The independent variable in this experiment is the harshness of the classifier.

Harshness True
positives

True
negatives

False
positives

False
negatives

Precision Recall

0 390±10 40±10 0±0 90±10 1.0±0.0 0.81±0.02
1 440±30 22±4 0±0 62±5 1.0±0.0 0.88±0.01
2 500±100 30±10 1±2 27±5 0.998±0.003 0.95±0.01
3 420±30 20±10 100±10 12±2 0.8±0.02 0.97±0.01
4 20±10 0±0 500±100 0±0 0.04±0.02 1.0±0.0

Table 5.5: Results of the second experiment with the flooding censor, specifically the mean and
standard deviation number of true positives, true negatives, false positives, and false negatives for
each set of trials. The independent variable in this experiment is the harshness of the classifier.

Harshness True
positives

True
negatives

False
positives

False
negatives

Precision Recall

0 370±20 40±10 0±0 90±10 1.0±0.0 0.8±0.02
1 410±20 30±10 0±0 80±10 1.0±0.0 0.85±0.02
2 440±30 40±10 1±1 60±20 0.997±0.003 0.88±0.03
3 430±20 30±10 100±20 40±10 0.81±0.04 0.91±0.02
4 20±10 0±0 570±40 2±2 0.03±0.01 0.9±0.1
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in this plot, corresponding to Troll Patrol taking either 0 days or 1 day to detect censorship.
When the probability of users submitting reports is 0, there is only one area with observable
density at 1 day, but as more users submit reports, we can see that Troll Patrol is more likely
to detect censorship on the same day that the bridge is blocked. As the probability of users
submitting reports increases from 0 in Figures 5.1a and 5.1b, we also observe a gradual trend of
recall improving (increasing from 0.92±0.01 when no users submit reports to 0.99±0.01 when
all users submit reports, as reported in Table 5.2) while precision does not change significantly.
This indicates that Troll Patrol is able to correctly detect more blockages if more users submit
reports.

While negative reports were helpful for detecting censorship by an overt censor, we found that
they were essential for detecting censorship by a flooding censor, something that is not possible
with publicly reported bridge statistics alone. As we see in Figure 5.1c, when only 1% of users
submit reports, Troll Patrol fails to detect almost all blockages by the flooding censor; however,
when the probability of users submitting reports increases, Troll Patrol’s recall rapidly improves.
We can see in Figure 5.1d that even in the presence of this flooding censor, Troll Patrol was able
to identify over 85% of blocked bridges when only 25% of users submitted reports.

We observed that in all comparisons (in both Figure 5.1 and Figure 5.2), the flooding censor
was better able to evade detection than the overt censor. By comparing Figure 5.1e to Figure 5.1f
and Figure 5.2c to Figure 5.2d, we observe that Troll Patrol often took longer to detect censorship
by the flooding censor than by the overt censor. While we consider bridge stats insufficient on
their own for reliably detecting censorship, this finding highlights that they are still useful against
a censor that does not manipulate connection counts. Thus, we do not suggest replacing bridge
stats with negative reports; instead, the two should be used together. As positive reports never
impacted Troll Patrol’s classifications in our experiments, we conclude that this type of report is
unlikely to be useful in practice.

We now discuss the results of our second experiment. In terms of tuning our classifier, we
found that using a harshness value of 2 produced favorable results. In this case, bridges should
be considered blocked upon receipt of 3 or more valid negative reports in one day or if the
reported connection count from a given country falls below either 16 or the maximum number
of reports observed for that bridge in the past 30 days minus 16, whichever is lower. In the case
that the bridge has been active for 30 days or fewer, it may be considered blocked if it reports 0
connections but has reported 16 or more connections in the past. We see in Figures 5.2a and 5.2b
that lower harshness values (corresponding to a higher threshold for negative reports and a lower
threshold for reported connection counts) saw a decrease in recall for only marginal precision
gains, while higher values decreased precision significantly, with a harshness value of 4 resulting
in a high number of false positives. Additionally, from Figure 5.2c, we can see that it took Troll
Patrol longer to detect censorship than it did with a harshness value of 1 or higher.
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5.4 Conclusion

In this chapter, we describe the setup of our experiment and provide its results. We discuss the
implications of these results, concluding that negative reports are helpful for detecting bridge
censorship, and we recommend incorporating negative reports, but not positive reports, into the
Tor Project’s bridge blockage detection system. In the next chapter, we will discuss shortcomings
of this study and future directions that may improve upon our work.
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Chapter 6

Limitations and Future Work

In this chapter, we identify shortcomings of Troll Patrol and the simulation we used to evaluate
it, as well as areas where future work may extend or improve upon our contributions.

6.1 Limitations

6.1.1 Country-Level Assumptions

Troll Patrol considers whether or not people in a specific country are able to access a specific
bridge. This reflects the state of other related systems. Bridge statistics, for example, report
bridge-ips on a per-country basis, and rdsys stores whether or not bridges are blocked based
on country codes [TP23a]. Whether or not a bridge is accessible from a given country is a
reasonable question when the country in question implements censorship uniformly for all resi-
dents; however, this is not the case everywhere. In some countries, such as India, different ISPs
implement different censorship policies [SGB20], so a bridge blocked for some users may be ac-
cessible to others. For the purpose of Lox, which assumes a bridge revealed to any censor should
be considered blocked for all users, this granularity is acceptable, but it may make detecting
blockages more difficult when censorship is not applied uniformly. User reports could provide
more granular information about users, such as indicating specific regions within a country or
specific ISPs; however, this would negatively impact user privacy. Perhaps a compromise, such
as differentially private location reporting, could provide a reasonable compromise between the
goals of accurate censorship detection and user privacy. (However, adoption of techniques such
as differential privacy could also make it more difficult to explain the privacy implications of
reports to users, resulting in lower rates of user consent to report submission.)
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Additionally, we evaluate Troll Patrol in a simulated setting in which all users are located
within the same country. Identifying censorship when the users of a bridge are spread out across
more countries may be more challenging, as Troll Patrol would have less per-country data on
bridge use. For this reason, we recommend that Lox distribute each open-entry bucket only to
users in the same country when it is possible to infer users’ countries. If each open-entry bucket
is distributed primarily within a single country, Lox should select open-entry buckets that were
distributed to users in the same country to group together in invite-only superset buckets. We
note that it may not be possible to infer a user’s country when they request an open invitation,
and users may invite friends from other countries to join their buckets. Nevertheless, taking this
step would help to ensure that Troll Patrol has enough data from a single country to evaluate
whether or not a bridge is blocked in that country.

6.1.2 No Model of Social Graphs

In our simulation, we simplistically assume that each time an invitation is issued, it has a certain
probability of being issued to a censor agent, and if it is issued to an honest user, it is essentially
issued to a random honest user who needs an invitation. As we note, one implication of this
is that given enough time, the censor is able to infiltrate most buckets. A more accurate way to
model social graphs may be to give each user an individualized probability of unknowingly being
friends with a censor agent. Additionally, first defining the actual social graphs between groups
of users and having users only provide invitations to their friends (or possibly friends of friends),
rather than random users, would be a more realistic way to model the trust networks leveraged by
Lox. This would likely allow us to observe more accurate bridge censorship dynamics, improving
our analysis.

6.2 Future Work

6.2.1 Detecting Mass-Blockage Events

The threat models of Lox and Troll Patrol assume that censors learn about individual bridges in
the same ways honest users do; however, we recognize that censors may also be able to identify
and block a large number of bridges at once through other means, for example by finding a flaw
in a PT’s protections against protocol-level fingerprinting or active probing, or by heuristically
blocking fully encrypted traffic [WSS+23]. The Lox paper notes that if a mass-blockage event,
such as a censor blocking all lyrebird bridges, were to occur, users should be given new bridges,
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but some users may migrate before this happens, causing them to lose trust levels [TG23]. The
Lox Distributor stores previous versions of its own state [Tul23], and in response to a mass-
blockage event, it can roll back to some point in time prior to the event to allow users who lost
trust to reuse their old credentials. A useful extension for Troll Patrol would be detecting such
mass-blockage events and flagging them as special events that may require rollback action from
Lox. Of course, a censor may simply learn many bridges but wait to block them until a specific
time (such as during an election). Such an occurrence may appear similar to a censor suddenly
fingerprinting and blocking a PT. In attempting to identify protocol-level blocking events, Troll
Patrol should not absolve users of actual cooperation with censors.

6.2.2 Shorter Analysis Periods

We design Troll Patrol primarily to fulfill a requirement of Lox, and we tailor it to Lox’s needs.
As Lox currently requires knowledge of bridge blockages once per day, and published bridge
statistics cover a 24-hour period, Troll Patrol collects data representing an entire day and uses
this data to draw its conclusions. However, reducing the duration of this period may be useful for
applications that need a faster answer about bridge reachability. One possible method for accel-
erating analysis would determining the minimum number of negative reports that would result
in the bridge being blocked and immediately reporting the blockage to the bridge’s distributor
upon receipt of that number. This would require Troll Patrol to send reports to the distributor for
verification immediately after receiving them (or after receiving at least this threshold number),
rather than at the end of the day.

6.2.3 Report Submission

We do not prescribe the client report submission process. We provide designs for the reports,
and our reference implementation includes functions for creating the reports, but we assume that
these functions will be called by Tor Browser, either automatically or manually. Here, we provide
considerations for implementation of report submission in client software. We ultimately do not
recommend the use of positive reports, so we focus only on the details of submitting negative
reports.

Imperatively, reports must only be submitted if the user has consented to their submission.
Ideally, reporting would be automated by Tor Browser. In this case, the user should be prompted
either when they first open the browser or when they are first eligible to submit reports (i.e.,
when they are first unable to connect to a bridge). The latter may be a more effective strategy
for informing users of the purpose of the reports so that they can give consent. One can easily
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imagine a user dismissing a telemetry request out-of-hand upon starting the Tor Browser for the
first time but being willing to report a known issue when they are unable to connect. Users should
be able to consent or refuse to consent, and they should be able to change their decision at any
time. Alternatively, the user may be prompted to submit a report each day they are unable to
connect to a bridge. In this case, the user must be provided an option to disable these prompts
altogether.

We specifically design reports to avoid revealing private user information. Negative reports
identify that a connection to a bridge was attempted and failed, along with the following infor-
mation:

• The hashed bridge fingerprint

• The user’s country

• The date of the connection attempt

• The distributor that distributed the bridge

• Additional cryptographic information

These reports identify users’ countries but nothing more precise. The additional crypto-
graphic information is a hash of the bridge line or β (along with a nonce and date). No input
to the hash relies on information about the user; these hashes only reflect information about
bridges. In Section 6.2.5, we discuss replacing this hash with a Lox proof in order to restrict
negative report submission. If this change is implemented, the cryptographic information will be
a zero-knowledge proof that allows the user to prove that they have a Lox credential without re-
vealing the credential’s private fields. (The LA would be able to determine the user’s bucket, i.e.,
information about the user’s bridges, but no information that identifies the user or links the proof
to other proofs.) In either case, this additional cryptographic information does not identify users
with any greater precision than revealing the fact that they are legitimate users of the bridge.

If the client presents the exact pieces of (broadly) identifying data and how we will use the
data to users (in an easy-to-understand format that does not require a nuanced understanding of
the cryptography involved) when requesting consent, we believe that users will be more willing
to grant consent, as they will better understand the very minimal privacy implications. We em-
phasize that privacy protections do not obviate the need for consent; even though we reasonably
believe that the reports contain no personal information, users should not be forced to submit
them. We consider that users may be motivated to submit negative reports when they are unable
to connect but not positive reports when everything works well. It may be possible to entice
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users to submit positive reports by offering some sort of reward, such as more Lox invitations to
give to friends or shorter wait times before leveling up. However, given that our evaluation in
Chapter 5 found no impact of positive reports whatsoever, it seems unlikely that positive reports
will be useful enough to warrant incentives for users.

The timing of report submission must also be decided. Ideally, each user should submit
reports each day they attempt to connect to their bridges. If the user submits each report imme-
diately after their first connection attempt of the day, this leaks information about the connecting
client’s behavior to Troll Patrol. If the user’s client submits all of its collected reports when it
closes, this also leaks information. Additionally, if Troll Patrol’s analysis period is shortened,
this could delay the conclusion that a bridge is blocked. If the user waits a random amount of
time to submit each report, we risk the client going offline before submitting some reports. One
option would be for Tor Browser to submit reports either after a random delay or when it closes,
whichever comes first.

These matters should be carefully considered when designing the reporting component of
client software.

6.2.4 Negative Report Encryption Key Distribution

As described in Chapter 3, negative reports should be encrypted with a periodically rotated key.
Troll Patrol should generate a long-term signing key and use this to sign each new encryption
key. Then, the encryption key must be made available to all users in some way that is difficult
or expensive for the censor to block. We do not prescribe this process, but we suggest in Section
3.2.2 that the current key could be distributed along with Lox’s encrypted bridge table.

6.2.5 Limiting Negative Reports

As discussed in Chapter 3, we do not currently provide a technical restriction to the number
of reports an eligible user can submit; however, we suggest an approach for limiting positive
reports to one per bridge per credential per day. This approach could also be applied to negative
reports if desired. This change would require a Lox proof to be added for negative reports, as
it is for positive reports. The negative report must prove that the user has a Lox credential with
the bucket containing the bridge being reported and that that credential has not yet been used to
report that bridge on that date. This proof could safely replace the hash-based proof of bridge
knowledge in the current negative report design. If Troll Patrol is also used with non-Lox bridge
distributors, this restriction would only be implemented for Lox-distributed bridges, and Troll
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Patrol would still need to accept hashes in reports for non-Lox bridges. In this case, Troll Patrol
should reject negative reports that indicate Lox as the distributor but use hash-based proofs of
bridge knowledge. We note that the use of this Lox proof would allow us to remove the nonce,
obviating the need for encrypting negative reports for Lox-distributed bridges. However, we do
not recommend removing the encryption requirement. Encryption may still be preferred in case
it offers any meaningful privacy benefit either now or due to future changes, and negative reports
for bridges distributed by other distributors should still be encrypted. It would be simpler to
continue requiring encryption for all negative reports.

We observe that even with this restriction, in some cases it may be possible for one user to
submit two negative reports for the same bridge: one using their untrusted credential with the
open-entry bucket value and the other using their trusted credential with the invite-only bucket
value. However, this would only be possible if the user originally joined Lox using an open
invitation and is reporting their original bridge. We also note that limiting reports in the way we
describe would not prevent users from issuing invitations to themselves in order to obtain more
Lox credentials and submit more negative reports. In Section 3.3.2 we discussed the possibility
of a censor issuing invitations to itself in order to submit more positive reports and highlighted
the fact that the censor must wait until each credential is level 3 before using it to submit these
reports. Unlike positive reports, valid negative reports can be submitted by users of any level, so
the barrier to submitting multiple negative reports for one bridge on one day is much lower.

As we discussed in Section 3.2, we are not particularly concerned with the possibility of
censors falsely submitting negative reports, as we expect that a censor wishing to disrupt the
use of the bridge will actually block the bridge. However, we consider the possibility that a
troublemaker not affiliated with any censor learns bridges and submits negative reports for them
so that Troll Patrol falsely detects that they are blocked. Restricting negative reports based on Lox
credentials would not slow down such a troublemaker significantly. Thus, this restriction may
not be useful, or it may only be useful for preventing accidental duplicate report submissions,
e.g., due to software bugs.

We note that Lox is already equipped to handle malicious users who submit many negative
reports; it will deal with them the same way it deals with censors. Their bridges will be detected
as blocked, and unless they are able to migrate to new buckets, they will not be able to learn new
bridges. Even if such a user is willing to be patient and waits to submit their reports until they
have a level 3 credential, they will only be able to migrate a few times before they lose the ability
to level up and with it the ability to continue migrating.
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6.2.6 Active Scans

We do not implement active (direct, reverse, or indirect) scans as part of our system, but we
suggest that Troll Patrol may be extended with this functionality, either to verify its conclusions
or to gather initial ground truth for the purpose of developing a more accurate classifier. Including
these techniques would require providing the system with sensitive data (i.e., the bridge lines to
test) we have thus far designed it not to need. However, this compromise may be acceptable,
especially as we consider that Troll Patrol may run on the same machine as the Lox Authority.

6.2.7 Evaluation with Additional Types of Censors

In Section 4.5, we discuss multiple approaches to censors’ speed, secrecy, and totality, but our
evaluation in Chapter 5 uses only two types of censors: overt and flooding censors that are both
fast and full. Further evaluation of Troll Patrol’s ability to detect censorship by other types of
censors would be valuable.
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Chapter 7

Conclusion

In this thesis, we showed that it is possible to design a bridge blockage detection system that
harnesses privacy-preserving user reports in conjunction with bridge usage statistics to success-
fully detect more blocked bridges than would be detected using only bridge usage statistics. We
showed that these user reports can allow such a system to detect censorship even when the censor
takes measures to hide it.

To show this, we presented Troll Patrol, such a system for detecting censorship of Tor bridges.
A central component of Troll Patrol is an anonymous reporting system that allows honest users to
submit reports of blocked bridges without identifying themselves while preventing censors aim-
ing to disrupt the system from submitting valid reports for bridges they do not know. Troll Patrol
evaluates bridge reachability based on extant bridge usage statistics and these novel anonymous
reports. In simulations, we found that Troll Patrol was able to accurately detect the majority
of blocked bridges, and its accuracy improved when users submitted reports that bridges were
blocked. These reports of blocked bridges also enabled Troll Patrol to defend against an attack
it otherwise could not, in which the censor artificially inflated user connection counts to evade
detection. We found that even when the censor employed this attack, Troll Patrol was able to
detect over 85% of blocked bridges as long as at least 25% of users submitted reports.

It is our hope that our work will help the Tor Project test and deploy Lox to enable more
people around the world to gain privacy, anonymity, and autonomy through the use of Tor.
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Appendix A

Source Code Availability

This work produced the following Rust projects, all publicly available and licensed under the
MIT/Expat license.

• https://git-crysp.uwaterloo.ca/vvecna/troll-patrol – This is the
main codebase for Troll Patrol.

• https://git-crysp.uwaterloo.ca/vvecna/lox-simulation – This is the
simulation. We include a Dockerfile for reproducing our simulations.

• https://git-crysp.uwaterloo.ca/vvecna/lox cli – This is a simple Lox
client library and command-line interface. It is used to perform user actions in our simula-
tion.

Additionally, we made modifications to the Lox codebase. Our fork of the Lox project is
available at https://gitlab.torproject.org/vecna/lox.
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